Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Terri A. Zachos x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To determine the effects of pretreatment with α-linolenic acid, an omega-3 polyunsaturated fatty acid, on equine synovial explants challenged with lipopolysaccharide (LPS).

Animals—8 mature mixed-breed horses (4 mares and 4 geldings).

Procedure—Synovial explants were assigned to receive 1 of 7 concentrations of α-linolenic acid, ranging from 0 to 300 µg/mL. At each concentration, half of the explants were controls and half were challenged with 0.003 µg of LPS as a model of synovial inflammation. Cell inflammatory response was evaluated by measurement of prostaglandin E2 production via an ELISA. Synovial cell viability, function, histomorphologic characteristics, and cell membrane composition were evaluated by use of trypan blue dye exclusion, hexuronic acid assay for hyaluronic acid, objective microscopic scoring, and high-performance liquid chromatography, respectively.

Results—Challenge with LPS significantly increased production of prostaglandin E2 and decreased production of hyaluronic acid. Treatment with α-linolenic acid at the highest dose inhibited prostaglandin E2 production. Cell viability and histomorphologic characteristics were not altered by treatment with α-linolenic acid or LPS challenge. Treatment with α-linolenic acid increased the percentage of this fatty acid in the explant cell membranes.

Conclusions and Clinical Relevance—Results suggest that investigation of α-linolenic acid as an anti-inflammatory medication for equine synovitis is warranted. (Am J Vet Res 2005;66:1503–1508)

Full access
in American Journal of Veterinary Research


Objective—To evaluate host cell permissiveness and cytotoxic effects of recombinant and modified adenoviral vectors in equine chondrocytes, synovial cells, and bone marrow–derived mesenchymal stem cells (BMD-MSCs).

Sample Population—Articular cartilage, synovium, and bone marrow from 15 adult horses.

Procedures—Equine chondrocytes, synovial cells, and BMD-MSCs and human carcinoma (HeLa) cells were cultured and infected with an E-1–deficient adenovirus vector encoding the β-galactosidase gene or the green fluorescent protein gene (Ad-GFP) and with a modified E-1–deficient vector with the arg-gly-asp capsid peptide insertion and containing the GFP gene (Ad-RGD-GFP). Percentages of transduced cells, total and transduced cell counts, and cell viability were assessed 2 and 7 days after infection.

Results—Permissiveness to adenoviral vector infection was significantly different among cell types and was ranked in decreasing order as follows: HeLa cells > BMD-MSCs > chondrocytes > synovial cells. Morphologic signs of cytotoxicity were evident in HeLa cells but not in equine cells. Numbers of transduced cells decreased by day 7 in all cell types except equine BMD-MSCs. Transduction efficiency was not significantly different between the Ad-GFP and Ad-RGD-GFP vectors.

Conclusion and Clinical Relevance—Sufficient gene transfer may be achieved by use of an adenovirus vector in equine cells. High vector doses can be used in equine cells because of relative resistance to cytotoxic effects in those cells. Greater permissiveness and sustained expression of transgenes in BMD-MSCs make them a preferential cell target for gene therapy in horses.

Full access
in American Journal of Veterinary Research