Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Teresa L. Leavens x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the tissue depletion profile of tulathromycin and determine an appropriate slaughter withdrawal interval in meat goats after multiple SC injections of the drug.

Animals—16 healthy Boer goats.

Procedures—All goats were administered tulathromycin (2.5 mg/kg, SC) twice, with a 7-day interval between doses. Blood samples were collected throughout the study, and goats were euthanized at 2, 5, 10, and 20 days after the second tulathromycin dose. Lung, liver, kidney, fat, and muscle tissues were collected. Concentrations of tulathromycin in plasma and the hydrolytic tulathromycin fragment CP-60,300 in tissue samples were determined with ultrahigh-pressure liquid chromatography–tandem mass spectrometry.

Results—The plasma profile of tulathromycin was biphasic. Absorption was very rapid, with maximum drug concentrations (1.00 ± 0.42 μg/mL and 2.09 ± 1.77 μg/mL following the first and second doses, respectively) detected within approximately 1 hour after injection. Plasma terminal elimination half-life of tulathromycin was 61.4 ± 14.1 hours after the second dose. Half-lives in tissue ranged from 2.4 days for muscle to 9.0 days for lung tissue; kidney tissue was used to determine the withdrawal interval for tulathromycin in goats because it is considered an edible tissue.

Conclusions and Clinical Relevance—On the basis of the tissue tolerance limit in cattle of 5 ppm (μg/g), the calculated withdrawal interval for tulathromycin would be 19 days following SC administration in goats. On the basis of the more stringent guidelines recommended by the FDA, the calculated meat withdrawal interval following tulathromycin administration in goats was 34 days.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether pharmacokinetics and milk elimination of flunixin and 5-hydroxy flunixin differed between healthy and mastitic cows.

Design—Prospective controlled clinical trial.

Animals—20 lactating Holstein cows.

Procedures—Cows with mastitis and matched control cows received flunixin IV, ceftiofur IM, and cephapirin or ceftiofur, intramammary. Blood samples were collected before (time 0) and 0.25, 0.5, 1, 2, 4, 8, 12, 24, and 36 hours after flunixin administration. Composite milk samples were collected at 0, 2, 12, 24, 36, 48, 60, 72, 84, and 96 hours. Plasma and milk samples were analyzed by use of ultra–high-performance liquid chromatography with mass spectrometric detection.

Results—For flunixin in plasma samples, differences in area under the concentration-time curve and clearance were detected between groups. Differences in flunixin and 5-hydroxy flunixin concentrations in milk were detected at various time points. At 36 hours after flunixin administration (milk withdrawal time), 8 cows with mastitis had 5-hydroxy flunixin concentrations higher than the tolerance limit (ie, residues). Flunixin residues persisted in milk up to 60 hours after administration in 3 of 10 mastitic cows.

Conclusions and Clinical Relevance—Pharmacokinetics and elimination of flunixin and 5-hydroxy flunixin in milk differed between mastitic and healthy cows, resulting in violative residues. This may partially explain the high number of flunixin residues reported in beef and dairy cattle. This study also raised questions as to whether healthy animals should be used when determining withdrawal times for meat and milk.

Full access
in Journal of the American Veterinary Medical Association