Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Taralyn M. McCarrel x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE

To quantify the translation and angular rotation of the distal sesamoid bone (DSB) using computed tomography (CT) and medical modeling software.

SAMPLE

30 thoracic limbs from equine cadavers.

PROCEDURES

Partial (n = 12), full (8), and matched full and subsequently transected (10) thoracic limbs were collected. Bone volume CT images were acquired in three positions: extension (200° metacarpophalangeal angle), neutral (180°), and maximal flexion (110°). Mean translation and angular rotation of each DSB were recorded. Differences were determined with two-way ANOVA and post hoc Tukey’s tests for pairwise comparisons; P value was set at < 0.05.

RESULTS

Dorsal translation was significant during extension (1.4 ± 0.4 mm full limbs and 1.3 ± 0.2 mm partial limbs, P < 0.001). Distal translation was significant during extension (1.9 ± 0.4 mm full and 1.1 ± 0.4 mm partial) and flexion (5.4 ± 0.7 mm full and 6.22 ± 0.6 mm partial, P < 0.001). Rotation was significant (P < 0.001) about the mediolateral axis during extension (17.1° ± 1.4°) and flexion (2.6° ± 1.3°). Translation and rotation of the DSB were significantly different (P < 0.001) between full and partial limbs.

CLINICAL RELEVANCE

This study provides the first quantification of translation and angular rotation of the DSB within the equine hoof. Partial limbs had significantly reduced movement compared to full limbs, suggesting that transection of flexor tendons alters distal thoracic limb kinematics. Further studies are required to determine if pathologic changes in the podotrochlear apparatus have an impact in clinical lameness outcomes.

Open access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To develop 3D models of larynges to compare arytenoid abduction measurements between specimens and models, and to investigate the anatomic feasibility of placing an implant across the cricoarytenoid joint (CAJ) with or without arthrotomy.

SAMPLES

Cadaveric equine larynges (n = 9).

PROCEDURES

Equine larynges underwent sequential CT scans in a neutral position and with 2 arytenoid treatments: bilateral arytenoid abduction (ABD) and bilateral arytenoid abduction after left cricoarytenoid joint arthrotomy (ARTH). Soft tissue, cartilage, and luminal volume 3-dimensional models were generated. Rima glottidis cross-sectional area (CSA) and left-to-right quotient (LRQ) angles were measured on laryngeal specimens and models. Arytenoid translation, articular contact area, and length of modeled implants placed across the CAJ were measured on models. Data were analyzed using paired t test or ANOVA and Tukey’s post hoc test or non-parametric equivalents (P < .05).

RESULTS

ARTH CSA was larger for laryngeal specimens than models (P = .0096). There was no difference in all other measures of CSA and LRQ angle between treatment groups or between specimens and models. There was no difference between ABD and ARTH groups for arytenoid cartilage translation, contact area, and implant length. The articular contact area was sufficient for modeled implant placement across the CAJ with a narrow range of implant lengths (17.59 mm to 23.87 mm) across larynges with or without arthrotomy.

CLINICAL RELEVANCE

These results support further investigation of a CT-guided, minimally invasive surgical procedure. Future studies will evaluate the outcomes of the new procedure for technical precision, biomechanical stability, and post-operative success rates for horses with recurrent laryngeal neuropathy (RLN).

Open access
in American Journal of Veterinary Research