Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Tamara B. Wills x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To evaluate whether markers of platelet activation, including P-selectin expression, phosphatidylserine exposure, platelet-leukocyte aggregates, and microparticle formation, could be measured in nonstimulated and stimulated canine blood samples and develop a standardized protocol for detection of activated platelet markers in canine blood.

Sample population—Blood samples from 10 dogs.

Procedure—Platelet activation was determined by flow cytometric measurement of platelets with P-selectin expression, platelet-leukocyte aggregates, platelet microparticles, and platelets with phosphatidylserine exposure. Changes in specific markers of platelet activation in nonstimulated versus stimulated samples were assessed by use of varying concentrations of 2 platelet agonists, platelet-activating factor (PAF) and adenosine diphosphate. Flow cytometry was used to detect platelet CD61 (glycoprotein IIIa), CD62P (P-selectin), and the leukocyte marker CD45. Annexin V was used to identify exposed phosphatidylserine.

Results—A significant difference was detected in the percentages of platelets with P-selectin, plateletleukocyte aggregates, microparticles, and platelets with annexin V exposure (phosphatidylserine) in samples stimulated with 10nM PAF versus the nonstimulated samples, with platelet-leukocyte aggregates having the greatest difference.

Conclusions and Clinical Relevance—Platelet activation is essential for thrombus formation and hemostasis and may be potentially useful for evaluation of dogs with suspected thromboembolic disease. Prior to development of a thrombotic state, a prothrombotic state may exist in which only a small number of platelets is activated. Identification of a prothrombotic state by use of activated platelets may help direct medical intervention to prevent a thromboembolic episode.

Full access
in American Journal of Veterinary Research