Search Results
You are looking at 1 - 2 of 2 items for
- Author or Editor: Tae Hyun Kim x
- Refine by Access: All Content x
Abstract
Objective—To evaluate the mydriatic effect of intracameral injection of preservative-free 1% and 2% lidocaine hydrochloride solutions and determine the onset and duration of mydriasis according to the concentration and volume of lidocaine administered in healthy dogs.
Animals—5 healthy adult Beagles weighing 7 to 10 kg, with no apparent ocular disease.
Procedures—A double-blind randomized 9-session crossover trial was designed. Both eyes were assigned to 9 treatments with a minimum 7-day washout period between treatments: 0.1, 0.2, and 0.3 mL of 2% lidocaine solution; 0.1, 0.2, and 0.3 mL of 1% lidocaine solution; and 0.1, 0.2, and 0.3 mL of balanced salt solution. Dogs were anesthetized, and the allocated treatment was injected intracamerally after aspiration of the same volume of aqueous humor from the anterior chamber of each eye. Two perpendicular pupil diameters were measured. Intraocular pressure, heart rate, respiratory rate, ECG readings, and end-tidal partial pressure of CO2 were monitored.
Results—Intracameral injection of 1% or 2% lidocaine solutions in volumes of 0.1 to 0.3 mL induced a significant degree of mydriasis, and the effect was maintained for 74 to 142 minutes. Lidocaine injection had no significant effect on intraocular pressure, heart rate, respiratory rate, ECG readings, or end-tidal partial pressure of CO2.
Conclusions and Clinical Relevance—Intracameral lidocaine injection in healthy dogs induced mydriasis, the timing of which was affected by concentration and volume of lidocaine. This technique could serve as an alternative to topically administered mydriatics for intraocular surgery in dogs.
Abstract
Objective—To evaluate the intraoperative and postoperative analgesic effects of intracameral lidocaine hydrochloride injection in dogs undergoing phacoemulsification.
Animals—12 healthy Beagles with healthy eyes.
Procedures—Dogs were randomly assigned to receive 1 of 2 intracameral injections: 2% lidocaine hydrochloride solution (0.3 mL) or an equivalent amount of balanced salt solution (BSS). All dogs were treated with acepromazine (0.05 mg/kg, IV) and cefazolin (30 mg/kg, IV), and tropicamide drops were topically applied to the eyes. Anesthesia was induced with propofol and maintained with isoflurane. The initial end-tidal isoflurane concentration was maintained at 1.2%. Heart rate, respiratory rate, arterial blood pressure, esophageal temperature, inspired and end-tidal isoflurane concentrations, and oxygen saturation were recorded every 5 minutes. The allocated agent was injected intracamerally after aspiration of the same volume of aqueous humor. Ten minutes after injection, phacoemulsification was performed. After surgery began, the isoflurane concentration was adjusted according to heart rate and mean arterial blood pressure. Pain scores were recorded before surgery and at 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 6, 8, 16, and 24 hours after extubation.
Results—Isoflurane requirements were significantly higher in the BSS group than in the lidocaine group. Mean ± SD time to administration of supplementary analgesia was significantly shorter in the BSS group (1.4 ± 1.2 hours) than in the lidocaine group (4.9 ± 1.2 hours).
Conclusions and Clinical Relevance—Intracameral lidocaine injection had significant analgesic effects in dogs undergoing cataract surgery. Results of this study suggest the value of intracameral lidocaine injection as an analgesic for intraocular surgery in dogs.