Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Sung-Hyeok Hong x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To evaluate dose-sparing effects of medetomidine-midazolam (MM), acepromazinebutorphanol (AB), and midazolam-butorphanol (MB) on the induction dose of thiopental and propofol and to examine cardiopulmonary changes in dogs.

Animals—23 healthy Beagles.

Procedure—Dogs were administered MM, AB, MB, or physiologic saline (0.9% NaCl) solution (PS) IM, and anesthesia was induced with thiopental or propofol. Cardiopulmonary measurements were obtained before and after administration of medication and 0, 5, 10, and 15 minutes after endotracheal intubation.

Results—Induction doses were reduced significantly by preanesthetic administration of MM, AB, and MB (thiopental, 20, 45, and 46% after administration of PS; propofol, 42, 58, and 74% after administration of PS, respectively). Recovery time in dogs administered MM-thiopental or MM-propofol and AB-propofol were significantly prolonged, compared with recovery time in dogs administered PS-thiopental or PS-propofol. Relatively large cardiovascular changes were induced by administration of MM, which were sustained even after the induction of anesthesia. Administration of AB and MB induced cardiovascular changes during and immediately after endotracheal intubation that were significantly decreased by induction with thiopental or propofol. However, mild hypotension developed with AB-propofol. Apnea was observed in dogs administered MM during induction of anesthesia, but most respiratory variables did not change significantly.

Conclusions and Clinical Relevance—Preanesthetic medication with MM greatly reduced the anesthesia induction dose of thiopental and propofol but caused noticeable cardiopulmonary changes. Preanesthetic medication with AB and MB moderately reduced the induction dose of thiopental and propofol and ameliorated cardiovascular changes induced by these anesthetics, although AB caused mild hypotension. (Am J Vet Res 2002;63:1671–1679)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine differentiation and growth inhibition effects of retinoids on canine osteosarcoma cells.

Sample Population—3 osteosarcoma cell lines established from osteosarcomas in dogs.

Procedure—Osteosarcoma cells were incubated with various concentrations of all-trans-retinoic acid and 9-cis-retinoic acid or control medium, counted daily for 10 days, and evaluated for morphologic changes. Synthesis of DNA was measured by use of a cell proliferation ELISA. To analyze effect of retinoids on colony formation on plastic dishes, cells were cultured for 14 days, fixed, and stained; number of colonies was counted.

Results—In a dose-dependent manner, both retinoids induced morphologic differentiation and growth inhibition in the 3 osteosarcoma cell lines and inhibited each cell's ability to form anchorage-dependent colonies.

Conclusion and Clinical Relevance—Retinoids induced differentiation of osteosarcoma cells of dogs, resulting in altered expression of their malignant phenotype. Induction of differentiation by retinoids may have potential as an adjunctive treatment for osteosarcoma in dogs. (Am J Vet Res 2000;61:69–73)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine effects of all-trans and 9-cis retinoic acid (RA) on tumor growth and metastatic ability of canine osteosarcoma cells transplanted into athymic (nude) mice.

Animals—Forty-five 5-week-old female BALB/c nude mice.

Procedure—1 × 107 POS osteosarcoma cells were transplanted subcutaneously into the intrascapular region of mice. All-trans RA (3 or 30 µg/kg of body weight in 0.1 ml of sesame oil), 9-cis RA (3 or 30 mg/kg in 0.1 ml of sesame oil), or sesame oil (0.1 ml; control treatment) were administered intragastrically 5 d/wk for 4 weeks beginning 3 days after transplantation (n = 4 mice/group) or after formation of a palpable tumor (5 mice/group). Tumor weight was estimated weekly by measuring tumor length and width, and retinoid toxic effects were evaluated daily. Two weeks after the final treatment, mice were euthanatized, and number of mice with pulmonary metastases was determined.

Results—Adverse treatment effects were not detected. Tumor weight was less in mice treated with either dose of 9-cis RA than in control mice, although this difference was not significant. Treatment with 30 mg of 9-cis RA/kg initiated after tumor formation significantly reduced the incidence of pulmonary metastasis, compared with the control group.

Conclusions and Clinical Relevance—9-cis RA decreased the incidence of pulmonary metastasis in nude mice transplanted with canine osteosarcoma cells and may be a potential adjunct therapy for treatment of osteosarcoma in dogs. (Am J Vet Res 2000; 61:1241–1244)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To generate an adenoviral vector that expressed the canine p53 gene and investigate its growth-inhibiting effect on canine osteosarcoma and mammary adenocarcinoma cell lines.

Sample Population—2 canine osteosarcoma cell lines (HOS, OOS) and 3 canine mammary adenocarcinoma cell lines (CHMp, CIPm, and CNMm).

Procedure—An adenoviral vector that expressed the canine p53 gene (AxCA-cp53) was generated. p53 gene expression was examined by use of reverse transcription (RT)-polymerase chain reaction (PCR) assay and immunohistochemistry. Susceptibility of cell lines to the adenoviral vector was determined by infection with an adenoviral vector that expresses β-galactosidase (AxCA-LacZ) and 3-indolyl-β-D-galactopyranoside staining. Growth inhibitory effects were examined by monitoring the numbers of cells after infection with mock (PBS) solution, AxCA-LacZ, or AxCA-cp53. The DNA contents per cell were measured by flow cytometry analysis. Apoptotic DNA fragmentation was detected by use of a terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay.

Results—AxCA-cp53-derived p53 gene mRNA and P53 protein were detected by RT-PCR analysis and immunohistochemistry, respectively. Multiplicity of infection at which 50% of cells had positive 3-indolyl- β-D-galactopyranoside staining results ranged from 10 to 50. AxCA-cp53 induced growth inhibition in a dosedependent manner. Arrest of the G1-phase population and apoptotic DNA fragmentation were observed in cells infected with AxCA-cp53.

Conclusions and Clinical Relevance—AxCA-cp53 inhibits cell growth via induction of cell cycle arrest and apoptosis in canine osteosarcoma and mammary adenocarcinoma cell lines that lack a functional p53 gene. AxCA-cp53 may be useful to target the p53 gene in the treatment of dogs with tumors. (Am J Vet Res 2003;64:880–888)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate results of centrosome hyperamplification in naturally developing tumors of dogs.

Sample Population—Tumor specimens from 9 dogs with tumors (rhabdomyosarcoma, osteosarcoma, chondrosarcoma, myxosarcoma, and mammary gland tumor) and 2 canine osteosarcoma cell lines.

Procedure—3 antibodies for centrosome proteins (ie, anti-γ-tubulin, anti-BRCA1, and anti-pericentrin) were used for immunohistochemical analysis. Double immunostaining for centrosomes was used to confirm the specificity of these antibodies for centrosomes. Mutational analysis of the canine p53 gene was carried out by polymerase chain reaction–singlestrand conformation polymorphism analysis, and expression of canine MDM2 protein was evaluated by use of immunohistochemical analysis, using anti- MDM2 antibody.

Results—Immunohistochemical analysis of dog osteosarcoma cell lines with apparent aneuploidy revealed frequent hyperamplification of centrosomes in the osteosarcoma cell lines. Similar hyperamplified centrosomes were detected in the tumor tissues from all of the 9 tumors. The frequency of cells with hyperamplified centrosomes (3 to 20/cell) in each tumor tissue ranged from 9.50 to 48.1%, whereas centrosome hyperamplification was not observed in normal lymph nodes from these dogs. In 8 of the 9 tumors, mutation of p53 gene or overexpression of MDM2, or both, was detected.

Conclusions and Clinical Relevance—Various types of naturally developing tumors in dogs often have hyperamplification of centrosomes associated with chromosome instability. Hyperamplification of centrosomes is a novel tumor marker for use in cytologic and histologic examinations of clinical specimens obtained from dogs. (Am J Vet Res 2001;62:1134–1141)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To perform molecular cloning of the canine telomerase reverse transcriptase (TERT) gene and determine its expression in neoplastic and nonneoplastic cells.

Sample Population—9 canine tumor cell lines derived from various neoplasms, 16 primary canine tumors, and tissues from 15 normal canine organs.

Procedure—Tumor cell lines were derived from canine tumors that included osteosarcoma, mammary gland adenocarcinoma, melanoma, acute lymphoblastic leukemia, lymphoma, and mastocytoma and a canine primary fibroblast culture. Canine TERT complementary DNA (cDNA) was amplified by use of polymerase chain reaction (PCR) and sequenced. Expression of TERT mRNA was examined by reverse transcription (RT)-PCR assay. Telomerase activity was measured by use of the telomeric repeat amplification protocol assay.

Results—The canine TERT cDNA clone was 237 base pairs in length and contained a central region encoding the reverse transcriptase motif 2. Expression of TERT mRNA was detected in canine tumor cell lines that had telomerase activity but not in telomerasenegative canine primary fibroblasts. The TERT mRNA was detected in 13 of 16 canine tumor tissues and several normal tissues such as liver, ovary, lymph node, and thymus. A significant correlation between TERT expression level and telomerase activity was noted.

Conclusions and Clinical Relevance—Expression of TERT mRNA was closely associated with telomerase activity in neoplastic cells as well as some non-neoplastic cells from dogs. In addition to telomerase activity, expression of TERT mRNA can be used as a marker of tumor cells. (Am J Vet Res 2003;64:1395–1400)

Full access
in American Journal of Veterinary Research