Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Sumit Duronghphongtorn x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To evaluate the cardiorespiratory and intestinal effects of the muscarinic type-2 (M2) antagonist, methoctramine, in anesthetized horses.

Animals—6 horses.

Procedure—Horses were allocated to 2 treatments in a randomized complete block design. Anesthesia was maintained with halothane (1% end-tidal concentration) combined with a constant-rate infusion of xylazine hydrochloride (1 mg/kg/h, IV) and mechanical ventilation. Hemodynamic variables were monitored after induction of anesthesia and for 120 minutes after administration of methoctramine or saline (0.9% NaCl) solution (control treatment). Methoctramine was given at 10-minute intervals (10 µg/kg, IV) until heart rate (HR) increased at least 30% above baseline values or until a maximum cumulative dose of 30 µg/kg had been administered. Recovery characteristics, intestinal auscultation scores, and intestinal transit determined by use of chromium oxide were assessed during the postanesthetic period.

Results—Methoctramine was given at a total cumulative dose of 30 µg/kg to 4 horses, whereas 2 horses received 10 µg/kg. Administration of methoctramine resulted in increases in HR, cardiac output, arterial blood pressure, and tissue oxygen delivery. Intestinal auscultation scores and intestinal transit time (interval to first and last detection of chromium oxide in the feces) did not differ between treatment groups.

Conclusions and Clinical Relevance—Methoctramine improved hemodynamic function in horses anesthetized by use of halothane and xylazine without causing a clinically detectable delay in the return to normal intestinal motility during the postanesthetic period. Because of their selective positive chronotropic effects, M2 antagonists may represent a safe alternative for treatment of horses with intraoperative bradycardia. (Am J Vet Res 2004;65:464–472)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate cardiopulmonary effects of glycopyrrolate in horses anesthetized with halothane and xylazine.

Animals—6 horses.

Procedure—Horses were allocated to 2 treatment groups in a randomized complete block design. Anesthesia was maintained in mechanically ventilated horses by administration of halothane (1% end-tidal concentration) combined with a constant-rate infusion of xylazine hydrochloride (1 mg/kg/h, IV). Hemodynamic variables were monitored after induction of anesthesia and for 120 minutes after administration of glycopyrrolate or saline (0.9% NaCl) solution. Glycopyrrolate (2.5 µg/kg, IV) was administered at 10-minute intervals until heart rate (HR) increased at least 30% above baseline or a maximum cumulative dose of 7.5 µg/kg had been injected. Recovery characteristics and intestinal auscultation scores were evaluated for 24 hours after the end of anesthesia.

Results—Cumulative dose of glycopyrrolate administered to 5 horses was 5 µg/kg, whereas 1 horse received 7.5 µg/kg. The positive chronotropic effects of glycopyrrolate were accompanied by an increase in cardiac output, arterial blood pressure, and tissue oxygen delivery. Whereas HR increased by 53% above baseline values at 20 minutes after the last glycopyrrolate injection, cardiac output and mean arterial pressure increased by 38% and 31%, respectively. Glycopyrrolate administration was associated with impaction of the large colon in 1 horse and low intestinal auscultation scores lasting 24 hours in 3 horses.

Conclusions and Clinical Relevance—The positive chronotropic effects of glycopyrrolate resulted in improvement of hemodynamic function in horses anesthetized with halothane and xylazine. However, prolonged intestinal stasis and colic may limit its use during anesthesia. (Am J Vet Res 2004;65:456–463)

Full access
in American Journal of Veterinary Research