Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Sue Lindborg x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To compare the effect of thyrotropin-releasing hormone (TRH) administration on endogenous ACTH concentrations in healthy horses and those with pituitary pars inter-media hyperplasia and compare the test with the dexamethasone suppression test (DST).

Design—Prospective case series.

Animals—15 horses with clinical signs of pituitary pars intermedia dysfunction (PPID), 4 horses with equivocal signs of PPID, and 29 horses without signs of PPID.

Procedures—ACTH concentrations prior to and after administration of TRH were measured 61 times in 48 horses. Results of the DST (cortisol response) were compared with those of the TRH test in 29 horses. Thirty-three horses (24 with no clinical signs of PPID, 5 with clinical signs of PPID, and 4 with equivocal clinical signs of PPID) were euthanized and necropsied and their pituitary glands evaluated.

Results—ACTH concentrations increased in all horses, but magnitude and duration of increase were significantly higher in horses with PPID. Endogenous ACTH concentrations were influenced by season. The ACTH baseline concentrations and response to TRH were not correlated with results of the DST. Results of DST were abnormal only in clinically abnormal horses or those with pars intermedia hyperplasia, but were within reference range in 17 of 26 tests in these horses.

Conclusions and Clinical Relevance—The ACTH response to TRH is a useful test for diagnosis of pituitary gland hyperplasia, particularly in horses in which baseline ACTH concentrations are within reference range. The DST was specific but not sensitive and was inconsistent for individuals, and results often did not agree with the TRH test response.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To measure plasma ACTH, D-melanocyte–stimulating hormone (D-MSH), and insulin concentrations during various photoperiods between February and October in horses and ponies with and without pituitary pars intermedia dysfunction (PPID).

Design—Cohort study.

Animals—13 clinically normal (control) ponies, 14 clinically normal (control) horses, 7 ponies with PPID, and 8 horses with PPID.

Procedures—Blood samples were collected from February through October during 8 photoperiods: 1, February 13 through March 2; 2, April 4 through 6; 3, June 19 through 22; 4, August 6 through 7; 5, August 14 through 17; 6, September 4 through 6; 7, September 26 through 28; and 8, October 16 through 18. Plasma ACTH, D-MSH, and insulin concentrations at each photoperiod were compared among groups.

Results—Log ACTH concentration was increased during photoperiod 4 through 8, compared with photoperiod 1 through 3, in all groups. In photoperiod 3 through 7, log ACTH concentrations were higher in horses and ponies with PPID, compared with values for control horses and ponies. D-Melanocyte–stimulating hormone (log and raw value) concentration was higher in photoperiod 2 through 8, compared with photoperiod 1, in control horses and ponies. In horses and ponies with PPID, log D-MSH concentration was higher in photoperiod 3 through 8, and D-MSH concentration was higher in photoperiod 4 through 8, compared with photoperiod 1. In control horses and ponies, plasma insulin concentration was lower in photoperiod 3 than in photoperiod 1.

Conclusions and Clinical Relevance—Plasma D-MSH and ACTH concentrations increased as daylight decreased from summer solstice (maximum daylight hours) to 12 hours of daylight.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To compare endogenous ACTH and α-melanocyte-stimulating hormone (α-MSH) concentrations after administration of thyrotropin-releasing hormone (TRH) and to compare ACTH concentrations after TRH administration with those following domperidone administration in healthy horses and horses with pituitary pars intermedia dysfunction (PPID).

Design—Prospective case series.

Animals—69 clinically normal horses and 47 horses with or suspected to have PPID.

Procedures—ACTH concentrations were measured during 108 TRH stimulation tests in 88 horses, and α-MSH concentrations were measured during 56 TRH stimulation tests in 50 horses. In 28 of these horses, ACTH concentrations after domperidone administration were measured and test results were compared. The pituitary gland was histologically examined in all horses that were euthanatized.

Results—ACTH and α-MSH concentrations increased in all horses afterTRH administration, with a greater and more prolonged increase in horses with PPID. Percentage increase was significantly greater for α-MSH concentration than for ACTH concentration. The change in ACTH concentration after domperidone administration was less consistent in differentiating clinically normal horses from those with PPID than was the response to TRH.

Conclusions and Clinical Relevance—Results suggested that ACTH concentration in response to TRH administration was useful for the diagnosis of PPID in horses and appeared more accurate than response to domperidone administration. Use of an α-MSH concentration ≥ 30 or 50 pmol/L did not appear superior to use of an ACTH concentration ≥ 36 pg/mL for the diagnosis of PPID, either before or 30 minutes after TRH administration.

Restricted access
in Journal of the American Veterinary Medical Association