Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Steven L. Carlson x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine serum lactoferrin concentrations (SLFC) in neonatal calves before and after ingestion of colostrum and to develop models that predict SLFC as a function of colostral lactoferrin concentrations (CLFC) in calves.

Animals—13 Holstein calves.

Procedure—Calves were fed 4 L of colostrum via oroesophageal feeder within 3 hours after birth. Serum samples were collected before ingestion of colostrum (day 0) and 2, 4, 6, and 7 days after birth. Colostrum and serum IgG concentrations were measured by use of radial immunodiffusion. The CLFC and SLFC were determined by use of an ELISA.

Results—Mean ± SD SLFC on days 0, 2, 4, 6, and 7 were 2.5 ± 1.6 (range 0.47 to 7.1), 6.0 ± 3.0 (range 2.0 to 16.6), 12.0 ± 12.4 (range 0.0 to 43.5), 17.1 ± 13.6 (range 2.2 to 39.4), and 13.6 ± 16.4 (range 0.0 to 43.8) mg/ml, respectively. The SLFC on days 6 and 7 differed significantly from SLFC on day 0. The model that best estimated SLFC on day 6 predicted that (SLFC)2 was a function of the logarithm of relative efficiency of passive transfer (REPT) and ([CLFC]2 × [REPT]2), where R 2 = 0.4. The model for SLFC on day 7 predicted that (SLFC)2 was a function of log(REPT), where R 2 = 0.44.

Conclusions and Clinical Relevance—Definitive evidence for passive transfer of lactoferrin via colostrum is lacking, because SLFC on day 2 or 4 were not significantly different than day 0. Relative efficiency of lactoferrin absorption was directly related to SLFC on day 6 but inversely related to SLFC on day 7. (Am J Vet Res 2002;63:476–478)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether serum IgG concentrations in neonatal calves are adversely affected by short-term frozen storage of colostrum.

Design—Prospective study.

Sample Population—Experiment 1 consisted of 10 pairs of Holstein calves (n = 20) fed matched aliquots of either fresh (n = 10) or frozen and thawed (10) colostrum. In experiment 2, 26 Holstein calves were fed either fresh (n = 13) or frozen and thawed (n = 13) colostrum.

Procedure—Experiment 1 consisted of calves resulting from observed parturitions; calves were randomly assigned to treatment groups (fresh or frozen and thawed colostrum) in pairs. Calves were fed 4 L aliquots of colostrum via oroesophageal intubation at 3 hours of age. Serum IgG concentrations at 2 days of age were compared between the 2 groups by use of a paired t-test. Experiment 2 consisted of calves resulting from observed parturitions; calves were randomly assigned to treatment groups (fresh or frozen and thawed colostrum). Calves were fed 4 L aliquots of colostrum via oroesophageal intubation at 3 hours of age. Regression analysis was used to determine whether calf serum IgG concentration was a function of colostral IgG concentration and colostrum storage group.

Results—Significant differences were not observed between the 2 groups in experiment 1. No significant relationship was observed between colostrum storage group and serum IgG concentration in experiment 2. The model that best predicted serum IgG concentrations accounted for 20% of the variability in serum IgG concentration.

Conclusion and Clinical Relevance—Frozen colostrum is an adequate source of IgG for calves. (J Am Vet Med Assoc 2001;219:357–359)

Restricted access
in Journal of the American Veterinary Medical Association