Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Stephanie McGrath x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE

To determine whether cell-free DNA (cfDNA) was detectable in CSF samples from dogs, whether CSF sample volume impacted CSF cfDNA concentration measurement, and whether CSF cfDNA concentration was associated with CNS disease category or CSF RBC count (RBCC), nucleated cell count (NCC), or protein concentration, which could aid in the diagnosis of neurologic diseases in dogs.

SAMPLE

80 CSF samples collected from dogs with (n = 60) and without (20) clinical neurologic disease between February 2017 and May 2018.

PROCEDURES

Results for CSF RBCC, NCC, protein concentration, and cfDNA concentration were compared across CSF groups established on the basis of whether they were obtained from dogs with (case groups) or without (control group) clinical signs of neurologic disease In addition, 5 paired CSF samples representing large (3.0-mL) and small (0.5-mL) volumes, were used to evaluate whether sample volume impacted measurement of CSF cfDNA concentration.

RESULTS

cfDNA was detected in 76 of the 80 (95%) CSF samples used to evaluate parameters across disease categories and in all 5 of the paired samples used to evaluate whether sample volume impacted cfDNA quantification. There were no substantial differences in cfDNA concentrations identified between groups (on the basis of disease category or sample volume), and the CSF cfDNA concentration did not meaningfully correlate with CSF RBCC, NCC, or protein concentration.

CONCLUSIONS AND CLINICAL RELEVANCE

Although results indicated that the CSF cfDNA concentration could not be used to differentiate between categories of neurologic disease in dogs of the the present study, further investigation is warranted regarding the use of CSF analysis, including sequencing specific cfDNA mutations, for diagnosing and monitoring neurologic disease in dogs.

Restricted access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To assess drug-drug interactions between cannabidiol (CBD) and phenobarbital (PB) when simultaneously administered to healthy dogs.

ANIMALS

9 healthy, purpose bred Beagles.

PROCEDURES

A 3-phase prospective, randomized pharmacokinetic (PK) interaction study of CBD and PB was performed as follows: phase 1, CBD PK determination and evaluation of CBD tolerability by 3 single-dose CBD (5 mg/kg, 10 mg/kg, and 20 mg/kg) protocols followed by 2-week CBD dosing; phase 2, a single-dose, 3-way, crossover PK study of CBD (10 mg/kg), PB (4 mg/kg), or CBD (10 mg/kg) administration plus PB (4 mg/kg); and phase 3, evaluation of chronic PB (4 mg/kg, q 30 d) administration followed by single-dose CBD (10 mg/kg) PK study.

RESULTS

Although there were variations in CBD PK variables in dogs receiving CBD alone or in conjunction with PB, significance differences in CBD PK variables were not found. No significant difference was observed in PB PK variables of dogs receiving PB alone or with CBD. During chronic CBD administration, mild gastrointestinal signs were observed in 5 dogs. At daily CBD doses of 10 to 20 mg/kg/d, hypoxia was observed in 5 dogs and increased serum alkaline phosphatase (ALP) activities (range, 301 to 978 U/L) was observed in 4 dogs. A significant increase in ALP activity was observed with chronic administration of CBD during phase 1 between day 0 and day 14.

CONCLUSIONS AND CLINICAL RELEVANCE

No significant PK interactions were found between CBD and PB. Dose escalation of CBD or adjustment of PB in dogs is not recommended on the basis of findings of this study.

Free access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To assess the effect of oral cannabidiol (CBD) administration in addition to conventional antiepileptic treatment on seizure frequency in dogs with idiopathic epilepsy.

DESIGN

Randomized blinded controlled clinical trial.

ANIMALS

26 client-owned dogs with intractable idiopathic epilepsy.

PROCEDURES

Dogs were randomly assigned to a CBD (n = 12) or placebo (14) group. The CBD group received CBD-infused oil (2.5 mg/kg [1.1 mg/lb], PO) twice daily for 12 weeks in addition to existing antiepileptic treatments, and the placebo group received noninfused oil under the same conditions. Seizure activity, adverse effects, and plasma CBD concentrations were compared between groups.

RESULTS

2 dogs in the CBD group developed ataxia and were withdrawn from the study. After other exclusions, 9 dogs in the CBD group and 7 in the placebo group were included in the analysis. Dogs in the CBD group had a significant (median change, 33%) reduction in seizure frequency, compared with the placebo group. However, the proportion of dogs considered responders to treatment (≥ 50% decrease in seizure activity) was similar between groups. Plasma CBD concentrations were correlated with reduction in seizure frequency. Dogs in the CBD group had a significant increase in serum alkaline phosphatase activity. No adverse behavioral effects were reported by owners.

CONCLUSIONS AND CLINICAL RELEVANCE

Although a significant reduction in seizure frequency was achieved for dogs in the CBD group, the proportion of responders was similar between groups. Given the correlation between plasma CBD concentration and seizure frequency, additional research is warranted to determine whether a higher dosage of CBD would be effective in reducing seizure activity by ≥ 50%.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE

To evaluate whether cell-based and tissue-based immunofluorescent assays (IFAs) run in parallel could be used to detect glial fibrillary acidic protein (GFAP) autoantibodies in the CSF of dogs with meningoencephalitis of unknown origin (MUO) and other CNS disorders

ANIMALS

15 CSF samples obtained from dogs with presumed MUO (n = 5), CNS disease other than MUO (5), and idiopathic epilepsy (5).

PROCEDURES

All CSF samples underwent parallel analysis with a cell-based IFA that targeted the α isoform of human GFAP and a tissue-based IFA that involved mouse brain cryosections. Descriptive data were generated.

RESULTS

Only 1 CSF sample yielded mildly positive results on the cell-based IFA; that sample was from 1 of the dogs with presumed MUO. The remaining 14 CSF samples tested negative on the cell-based IFA. All 15 CSF samples yielded negative results on the tissue-based IFA.

CONCLUSIONS AND CLINICAL RELEVANCE

Results suggested that concurrent use of a cell-based IFA designed to target the human GFAP-α isoform and a tissue-based IFA that involved mouse tissue cryosections was inadequate for detection of GFAP autoantibodies in canine CSF samples. Given that GFAP autoantibodies were likely present in the CSF samples analyzed, these findings suggested that epitopes differ substantially between canine and human GFAP and that canine GFAP autoanti-body does not bind to mouse GFAP. Without a positive control, absence of GFAP autoantibody in this cohort cannot be ruled out. Further research is necessary to develop a noninvasive and sensitive method for diagnosis of MUO in dogs.

Restricted access
in American Journal of Veterinary Research