Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Stefan Unterer x
  • Refine by Access: All Content x
Clear All Modify Search


In collaboration with the American College of Veterinary Pathologists

Open access
in Journal of the American Veterinary Medical Association


Objective—To evaluate an electrolyte analyzer for measurement of ionized calcium (Cai) and magnesium (Mgi) concentrations in blood, plasma, and serum; investigate the effect of various factors on measured values; and establish reference ranges for Cai and Mgi in dogs.

Animals—30 healthy adult dogs of various breeds.

Procedure—Precision in a measurement series, day-to-day precision, and linearity were used to evaluate the analyzer. The effects of exposure of serum samples to air, type of specimen (blood, plasma, or serum), and storage temperature on sample stability were assessed. Reference ranges were established with anaerobically handled serum.

Results—The coefficient of variation for precision in a measurement series was ≤ 1.5% for both electrolytes at various concentrations. The Cai and Mgi concentrations were significantly lower in aerobically handled serum samples, compared with anaerobically handled samples. The Cai and Mgi concentrations differed significantly among blood, plasma, and serum samples. In anaerobically handled serum, Cai was stable for 24 hours at 22°C, 48 hours at 4°C, and 11 weeks at –20°C; Mgi was stable for 8 hours at 22°C, < 24 hours at 4°C, and < 1 week at –20°C. In anaerobically handled serum, reference ranges were 1.20 to 1.35 mmol/L for Cai and 0.42 to 0.58 mmol/L for Mgi.

Conclusions and Clinical Relevance—The electrolyte analyzer was suitable for determination of Cai and Mgi concentrations in dogs. Accurate results were obtained in anaerobically handled serum samples analyzed within 8 hours and kept at 22°C. (Am J Vet Res 2004;65:183–187)

Full access
in American Journal of Veterinary Research


Objective—To evaluate whether determination of parathyroid gland size by use of ultrasonography is helpful in differentiating acute renal failure (ARF) from chronic renal failure (CRF) in dogs.

Design—Prospective study.

Animals—20 dogs with renal failure in which serum creatinine concentration was at least 5 times the upper reference limit. Seven dogs had ARF, and 13 dogs had CRF. Twenty-three healthy dogs were used as controls.

Procedure—Dogs were positioned in dorsal recumbency for ultrasonographic examination of the ventral portion of the neck, A 10-MHz linear-array high-resolution transducer was used. The size of the parathyroid gland was determined by measuring the maximal length of the gland on the screen when it was imaged in longitudinal section. For comparison among groups, the longest linear dimension of any of the parathyroid glands of each dog was used.

Results—Size of the parathyroid glands in the control dogs varied from 2.0 to 4.6 mm (median, 3.3 mm). In the dogs with ARF, gland size ranged from 2.4 to 4.0 mm (median, 2.7), which was not significantly different from controls. In dogs with CRF, the glands were more distinctly demarcated from the surrounding thyroid tissue, than those of controls and dogs with ARF. Sizes ranged from 3.9 to 8.1 mm (median, 5.7 mm), which was significantly larger, compared with controls and dogs with ARF.

Conclusion and Clinical Relevance—In dogs with severe azotemia, ultrasonographic examination of the parathyroid glands was helpful in differentiating ARF from CRF. Size of the parathyroid glands appeared to be related to body weight. (J Am Vet Med Assoc 2000;217:1849–1852)

Full access
in Journal of the American Veterinary Medical Association