Search Results
You are looking at 1 - 9 of 9 items for
- Author or Editor: Shinji Takai x
- Refine by Access: All Content x
Abstract
Objective—To develop a method for typing Streptococcus equi on the basis of the DNA sequence of the genes that produce an M-like protein and to compare isolates among the United States, Japan, and other countries.
Sample Population—S equi strains CF32, Hidaka/95/2, and NCTC9682 as well as 82 other isolates from the United States, Japan, and other countries obtained during 1975 to 2001.
Procedure—DNA sequences of the structural genes ( SeM and SzPSe) that produce M-like proteins were determined for 3 representative strains to find a variable region. Variability in this region of SeM was then determined for the other isolates. Amino acid sequences were deduced and analyzed phylogenetically by use of the neighbor-joining method.
Results—Sequence diversity was detected in the N-terminal region of SeM but not in SzPSe of the 3 representative strains. Base substitutions in the variable region of SeM varied in a nonsynonymous manner, resulting in variation in the amino acid sequence. Eighty-five isolates were categorized as 32 types of SeM on the basis of differences in the deduced amino acid sequences.
Conclusions and Clinical Relevance—This study documented a region in the N-terminal portion of SeM that varies in a nonsynonymous manner. This information should be useful in molecular epidemiologic studies of S equi. (Am J Vet Res 2005; 66:2167–2171)
Abstract
Objective—To determine whether the concentrations of airborne virulent Rhodococcus equi in stalls housing foals during the first 2 weeks after birth are associated with subsequent development of R equi pneumonia in those foals.
Sample—Air samples collected from foaling stalls and holding pens in which foals were housed during the first 2 weeks after birth.
Procedures—At a breeding farm in Texas, air samples (500 L each) were collected (January through May 2011) from stalls and pens in which 121 foals were housed on day 1 and on days 4, 7, and 14 after birth. For each sample, the concentration of airborne virulent R equi was determined with an immunoblot technique. The association between development of pneumonia and airborne R equi concentration was evaluated via random-effects Poisson regression analysis.
Results—Some air samples were not available for analysis. Of the 471 air samples collected from stalls that housed 121 foals, 90 (19%) contained virulent R equi. Twenty-four of 121 (20%) foals developed R equi pneumonia. Concentrations of virulent R equi in air samples from stalls housing foals that developed R equi pneumonia were significantly higher than those in samples from stalls housing foals that did not develop pneumonia. Accounting for disease effects, air sample concentrations of virulent R equi did not differ significantly by day after birth or by month of birth.
Conclusions and Clinical Relevance—Exposure of foals to airborne virulent R equi during the first 2 weeks after birth was significantly (and likely causally) associated with development of R equi pneumonia.
Abstract
Objective—To determine whether mares are a clinically important source of Rhodococcus equi for their foals.
Sample Population—171 mares and 171 foals from a farm in Kentucky (evaluated during 2004 and 2005).
Procedures—At 4 time points (2 before and 2 after parturition), the total concentration of R equi and concentration of virulent R equi were determined in fecal specimens from mares by use of quantitative bacteriologic culture and a colony immunoblot technique, respectively. These concentrations for mares of foals that developed R equi–associated pneumonia and for mares with unaffected foals were compared. Data for each year were analyzed separately.
Results—R equi–associated pneumonia developed in 53 of 171 (31%) foals. Fecal shedding of virulent R equi was detected in at least 1 time point for every mare; bacteriologic culture results were positive for 62 of 171 (36%) mares at all time points. However, compared with dams of unaffected foals, fecal concentrations of total or virulent R equi in dams of foals with R equi–associated pneumonia were not significantly different.
Conclusions and Clinical Relevance—Results indicate that dams of foals with R equi–associated pneumonia did not shed more R equi in feces than dams of unaffected foals; therefore, R equi infection in foals was not associated with comparatively greater fecal shedding by their dams. However, detection of virulent R equi in the feces of all mares during at least 1 time point suggests that mares can be an important source of R equi for the surrounding environment.
Abstract
Objective—To determine the sensitivity and specificity of 5 serologic assays used to diagnose Rhodococcus equi pneumonia in foals and to determine whether any of the assays could be used to identify affected foals prior to the onset of clinical signs or to differentiate between affected and unaffected foals when clinical signs first become apparent.
Design—Nested case-control study.
Animals—26 foals.
Procedure—Serum samples were obtained from all foals at 2, 4, and 6 or 7 weeks of age. Additional samples were obtained from affected foals at the time of diagnosis of R equi pneumonia and from agematched unaffected foals. Samples were tested with 3 ELISA, an agar gel immunodiffusion assay, and a synergistic hemolysis inhibition assay.
Results—Sensitivity and specificity data indicated that none of the assays could be used to reliably differentiate affected from unaffected foals at any testing period. Proportions of foals that had an increase in test values between paired samples collected at 4 and 6 or 7 weeks of age were not significantly different between affected and unaffected foals. For all assays, result values increased significantly over time; however, the rate of increase was not significantly different between affected and unaffected foals.
Conclusions and Clinical Relevance—Results suggest that serologic assays, whether performed on single or paired samples, cannot be used to reliably establish, confirm, or exclude a diagnosis of R equi pneumonia in foals. (J Am Vet Med Assoc 2002;221:825–833)
Abstract
Objective—To determine whether isolation and virulence of Rhodococcus equi from soil and infected foals are associated with clinical disease.
Design—Cross-sectional and case-control study.
Sample Population—R equi isolates from 50 foals with pneumonia and soil samples from 33 farms with and 33 farms without a history of R equi infection (affected and control, respectively).
Procedure—R equi was selectively isolated from soil samples. Soil and clinical isolates were evaluated for virulence-associated protein antigen plasmids (VapAP) and resistance to the β-lactam antibiotics penicillin G and cephalothin. Microbiologic cultures and VapA-P assays were performed at 2 independent laboratories.
Results—VapA-P was detected in 49 of 50 (98%) clinical isolates; there was complete agreement between laboratories. Rhodococcus equi was isolated from soil on 28 of 33 (84.8%) affected farms and 24 of 33 (72.7%) control farms, but there was poor agreement between laboratories. Virulence-associated protein antigen plasmids were detected on 14 of 66 (21.2%) farms by either laboratory, but results agreed for only 1 of the 14 VapA-P-positive farms. We did not detect significant associations between disease status and isolation of R equi from soil, detection of VapA-P in soil isolates, or resistance of soil isolates to β-lactam antibiotics. No association between β-lactam antibiotic resistance and presence of VapA-P was detected.
Conclusions and Clinical Relevance—On the basis of soil microbiologic culture and VapA-P assay results, it is not possible to determine whether foals on a given farm are at increased risk of developing disease caused by R equi. (J Am Vet Med Assoc 2000;217:220–225)
Abstract
Objective—To determine whether soil concentrations of total or virulent Rhodococcus equi differed among breeding farms with and without foals with pneumonia caused by R equi.
Sample Population—37 farms in central Kentucky.
Procedures—During January, March, and July 2006, the total concentration of R equi and concentration of virulent R equi were determined by use of quantitative bacteriologic culture and a colony immunoblot technique, respectively, in soil specimens obtained from farms. Differences in concentrations and proportion of virulent isolates within and among time points were compared among farms.
Results—Soil concentrations of total or virulent R equi did not vary among farms at any time point. Virulent R equi were identified in soil samples from all farms. Greater density of mares and foals was significantly associated with farms having foals with pneumonia attributable to R equi. Among farms with affected foals, there was a significant association of increased incidence of pneumonia attributable to R equi with an increase in the proportion of virulent bacteria between samples collected in March and July.
Conclusions and Clinical Relevance—Results indicated that virulent R equi were commonly recovered from soil of horse breeding farms in central Kentucky, regardless of the status of foals with pneumonia attributable to R equi on each farm. The incidence of foals with pneumonia attributable to R equi can be expected to be higher at farms with a greater density of mares and foals.
Abstract
Objective—To compare isolates of Rhodococcus equi on the basis of geographic source and virulence status by use of pulsed-field gel electrophoresis (PFGE).
Sample Population—290 isolates of R equi(218 virulent isolates from foals and 72 avirulent isolates from feces, soil, and respiratory tract samples) obtained between 1985 and 2000 from horses and horse farms from 4 countries.
Procedure—DNA from isolates was digested with the restriction enzyme AseI and tested by use of PFGE. Products were analyzed for similarities in banding patterns by use of dendrograms. A similarity matrix was constructed for isolates, and the matrix was tested for nonrandom distributions of similarity values with respect to groupings of interest.
Results—There was little grouping of isolates on the basis of country, virulence status, or region within Texas. Isolates of R equi were generally < 80% similar, as determined by use of PFGE. Isolates from the same farm generally were rarely of the same strain.
Conclusions and Clinical Relevance—Considerable chromosomal variability exists among isolates of R equi obtained from the same farm, sites within Texas, or among countries from various continents. Only rarely will it be possible to link infections to a given site or region on the basis of analysis of isolates by use of PFGE of chromosomal DNA. (Am J Vet Res 2003;64:153–161)
Abstract
Objective—To determine whether the concentration of airborne virulent Rhodococcus equi varied by location (stall vs paddock) and month on horse farms.
Sample—Air samples from stalls and paddocks used to house mares and foals on 30 horse breeding farms in central Kentucky.
Procedures—Air samples from 1 stall and 1 paddock were obtained monthly from each farm from January through June 2009. Concentrations of airborne virulent R equi were determined via a modified colony immunoblot assay. Random-effects logistic regression was used to determine the association of the presence of airborne virulent R equi with location from which air samples were obtained and month during which samples were collected.
Results—Of 180 air samples, virulent R equi was identified in 49 (27%) and 13 (7%) obtained from stalls and paddocks, respectively. The OR of detecting virulent R equi in air samples from stalls versus paddocks was 5.2 (95% confidence interval, 2.1 to 13.1). Of 60 air samples, virulent R equi was identified in 25 (42%), 18 (30%), and 6 (10%) obtained from stalls during January and February, March and April, and May and June, respectively. The OR of detecting virulent R equi from stall air samples collected during May and June versus January and February was 0.22 (95% confidence interval, 0.08 to 0.63).
Conclusions and Clinical Relevance—Foals were more likely to be exposed to airborne virulent R equi when housed in stalls versus paddocks and earlier (January and February) versus later (May and June) during the foaling season.
Abstract
Objective—To determine whether airborne concentrations of virulent Rhodococcus equi at 2 horse breeding farms varied on the basis of location, time of day, and month.
Sample Population—2 farms in central Kentucky with recurrent R equi-induced pneumonia in foals.
Procedures—From February through July 2008, air samples were collected hourly for a 24-hour period each month from stalls and paddocks used to house mares and their foals. Concentrations of airborne virulent R equi were determined via a modified colony immunoblot technique. Differences were compared by use of zero-inflated negative binomial methods to determine effects of location, time, and month.
Results—Whether mares and foals were housed predominantly in stalls or paddocks significantly affected results for location of sample collection (stall vs paddock) by increasing airborne concentrations of virulent R equi at the site where horses were predominantly housed. Airborne concentrations of virulent R equi were significantly higher from 6:00 pm through 11:59 pm than for the period from midnight through 5:59 am. Airborne concentrations of virulent R equi did not differ significantly between farms or among months.
Conclusions and Clinical Relevance—Airborne concentrations of virulent R equi were significantly increased when horses were predominantly housed at the site for collection of air samples (ie, higher in stalls when horses were predominantly housed in stalls and higher in paddocks when horses were predominantly housed in paddocks). Concentrations of virulent R equi among air samples collected between the hours of 6:00 am and midnight appeared similar.