Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Sarah M. Fischer x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine whether administration of inactivated virus or modified-live virus (MLV) vaccines to feral cats at the time of neutering induces protective serum antiviral antibody titers.

Design—Prospective study.

Animals—61 feral cats included in a trap-neuter-return program in Florida.

Procedures—Each cat received vaccines against feline panleukopenia virus (FPV), feline herpes virus (FHV), feline calicivirus (FCV), FeLV, and rabies virus (RV). Immediately on completion of surgery, vaccines that contained inactivated RV and FeLV antigens and either MLV or inactivated FPV, FHV, and FCV antigens were administered. Titers of antiviral antibodies (except those against FeLV) were assessed in serum samples obtained immediately prior to surgery and approximately 10 weeks later.

Results—Prior to vaccination, some of the cats had protective serum antibody titers against FPV (33%), FHV (21%), FCV (64%), and RV (3%). Following vaccination, the overall proportion of cats with protective serum antiviral antibody titers increased (FPV [90%], FHV [56%], FCV [93%], and RV [98%]). With the exception of the FHV vaccine, there were no differences in the proportions of cats protected with inactivated virus versus MLV vaccines.

Conclusions and Clinical Relevance—Results suggest that exposure to FPV, FHV, and FCV is common among feral cats and that a high proportion of cats are susceptible to RV infection. Feral cats appeared to have an excellent immune response following vaccination at the time of neutering. Incorporation of vaccination into trap-neuter-return programs is likely to protect the health of individual cats and possibly reduce the disease burden in the community.

Full access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE

To characterize clinical and epidemiologic features of SARS-CoV-2 in companion animals detected through both passive and active surveillance in the US.

ANIMALS

204 companion animals (109 cats, 95 dogs) across 33 states with confirmed SARS-CoV-2 infections between March 2020 and December 2021.

PROCEDURES

Public health officials, animal health officials, and academic researchers investigating zoonotic SARS-CoV-2 transmission events reported clinical, laboratory, and epidemiologic information through a standardized One Health surveillance process developed by the CDC and partners.

RESULTS

Among dogs and cats identified through passive surveillance, 94% (n = 87) had reported exposure to a person with COVID-19 before infection. Clinical signs of illness were present in 74% of pets identified through passive surveillance and 27% of pets identified through active surveillance. Duration of illness in pets averaged 15 days in cats and 12 days in dogs. The average time between human and pet onset of illness was 10 days. Viral nucleic acid was first detected at 3 days after exposure in both cats and dogs. Antibodies were detected starting 5 days after exposure, and titers were highest at 9 days in cats and 14 days in dogs.

CLINICAL RELEVANCE

Results of the present study supported that cats and dogs primarily become infected with SARS-CoV-2 following exposure to a person with COVID-19, most often their owners. Case investigation and surveillance that include both people and animals are necessary to understand transmission dynamics and viral evolution of zoonotic diseases like SARS-CoV-2.

Free access
in Journal of the American Veterinary Medical Association