Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Samuel J. Black x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine proinflammatory gene expression, endothelial adhesion molecule gene expression, and matrix metalloproteinase (MMP) concentrations in laminar specimens at 1.5 hours after administration of black walnut extract (BWE) and to compare these values with later time points.

Animals—25 horses.

Procedures—After nasogastric administration of BWE, anesthesia was induced at 1.5 hours in early time point (ETP) horses (n = 5), between 3 and 4 hours in developmental time point horses (5), and between 9 and 10 hours in acute onset of lameness time point horses (5). Anesthesia was induced at 3 and 10 hours after nasogastric administration of water in 2 groups of control horses (3-hour control group, n = 5; 10-hour control group, 5). Real-time quantitative PCR assay was performed on laminar specimens from control and ETP horses for cyclooxygenase (COX)-1, COX-2, interleukin (IL)-1β, tumor necrosis factor-α, IL-6, IL-8, IL-10, MMP-2, and MMP-9 gene expression; and on laminar specimens from all groups for endothelial adhesion molecules, intercellular adhesion molecule (ICAM)-1, and E-selectin gene expression. Leukocyte emigration was assessed via CD13 immunohistochemistry, and gelatinase accumulation was determined by gelatin zymography.

Results—Laminar concentrations of IL-1β, IL-6, IL-8, COX-2, ICAM-1, and E-selectin mRNA were significantly increased in ETP horses, compared with control horses. Concentrations of IL-1β, IL-8, ICAM-1, and E-selectin mRNA peaked at 1.5 hours. In ETP horses, leukocyte emigration was present in 3 of 5 horses and pro–MMP-9 was detected in 2 of 5 horses.

Conclusions and Clinical Relevance—Results indicated that endothelial activation and laminar inflammation are early events in laminitis; MMP accumulation likely is a downstream event.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether increased gene expression of a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4) in laminae of horses with starch gruel–induced laminitis was accompanied by increased enzyme activity and substrate degradation.

Sample—Laminae from the forelimb hooves of 8 healthy horses and 17 horses with starch gruel–induced laminitis (6 at onset of fever, 6 at onset of Obel grade 1 lameness, and 5 at onset of Obel grade 3 lameness).

Procedures—Gene expression was determined by use of cDNA and real-time quantitative PCR assay. Protein expression and processing were determined via SDS-PAGE and quantitative western blotting. Protein distribution and abundance were determined via quantitative immunofluorescent staining.

Results—ADAMTS-4 gene expression was increased and that of versican decreased in laminitic laminae, compared with expression in healthy laminae. Catalytically active ADAMTS-4 also was increased in the tissue, as were ADAMTS-4–cleavage fragments of versican. Immunofluorescent analyses indicated that versican was depleted from the basal epithelia of laminae of horses at onset of Obel grade 3 lameness, compared with results for healthy laminae, and this was accompanied by regional separation of basal epithelial cells from the basement membrane. Aggrecan gene and protein expression were not significantly affected.

Conclusions and Clinical Relevance—Changes in gene and protein expression of ADAMTS-4 and versican in the basal epithelium of laminitic laminae indicated a fundamental change in the physiology of basal epithelial cells. This was accompanied by and may have caused detachment of these cells from the basement membrane.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the expression and distribution of a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), its substrates aggrecan and versican, and their binding partner hyaluronan in laminae of healthy horses.

Sample—Laminae from the forelimb hooves of 8 healthy horses.

Procedures—Real-time quantitative PCR assay was used for gene expression analysis. Hyaluronidase, chondroitinase, and keratanase digestion of lamina extracts combined with SDS-PAGE and western blotting were used for protein and proteoglycan analysis. Immunofluorescent and immunohistochemical staining of tissue sections were used for protein and hyaluronan localization.

Results—Genes encoding ADAMTS-4, aggrecan, versican, and hyaluronan synthase II were expressed in laminae. The ADAMTS-4 was predominantly evident as a 51-kDa protein bearing a catalytic site neoepitope indicative of active enzyme and in situ activity, which was confirmed by the presence of aggrecan and versican fragments bearing ADAMTS-4 cleavage neoepitopes in laminar protein extracts. Aggrecan, versican, and hyaluronan were localized to basal epithelial cells within the secondary epidermal laminae. The ADAMTS-4 localized to these cells but was also present in some cells in the dermal laminae.

Conclusions and Clinical Relevance—Within digital laminae, versican exclusively and aggrecan primarily localized within basal epithelial cells and both were constitutively cleaved by ADAMTS-4, which therefore contributed to their turnover. On the basis of known properties of these proteoglycans, it is possible that they can protect the basal epithelial cells of horses from biomechanical and concussive stress.

Full access
in American Journal of Veterinary Research