Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: Sadatoshi Maeda x
- Refine by Access: All Content x
Abstract
Objective—To investigate effects of short- and long- term administration of glucocorticoids, feeding status, and serum concentrations of insulin and cortisol on plasma leptin concentrations in dogs.
Animals—20 nonobese dogs.
Procedure—For experiment 1, plasma leptin concentrations and serum concentrations of insulin and cortisol were monitored for 24 hours in 4 dogs administered dexamethasone (0.1 mg/kg, IV) or saline (0.9% NaCl) solution for fed and nonfed conditions. For experiment 2, 11 dogs were administered prednisolone (1 mg/kg, PO, q 24 h for 56 days [7 dogs] and 2 mg/kg, PO, q 24 h for 28 days [4 dogs]) and 5 dogs served as control dogs. Plasma leptin and serum insulin concentrations were monitored weekly.
Results—For experiment 1, dexamethasone injection with the fed condition drastically increased plasma leptin concentrations. Furthermore, injection of saline solution with the fed condition increased plasma leptin concentrations. These increases in plasma leptin concentrations correlated with increases in serum insulin concentrations. Dexamethasone injection with the nonfed condition increased plasma leptin concentrations slightly but continuously. Injection of saline solution with the nonfed condition did not alter plasma leptin concentrations. For experiment 2, prednisolone administration at either dosage and duration did not alter plasma leptin concentrations in any dogs.
Conclusions and Clinical Relevance—Dexamethasone injection and feeding increased plasma leptin concentrations in dogs. In addition, dexamethasone administration enhanced the effect of feeding on increases in plasma leptin concentrations. Daily oral administration of prednisolone (1 or 2 mg/kg) did not affect plasma leptin concentrations in dogs.
Abstract
Objective—To evaluate postprandial changes in the leptin concentration of CSF in dogs during development of obesity.
Animals—4 male Beagles.
Procedures—Weight gain was induced and assessments were made when the dogs were in thin, optimal, and obese body conditions (BCs). The fat area at the level of the L3 vertebra was measured via computed tomography to assess the degree of obesity. Dogs were evaluated in fed and unfed states. Dogs in the fed state received food at 9 AM. Blood and CSF samples were collected at 8 AM, 4 PM, and 10 PM.
Results—Baseline CSF leptin concentrations in the thin, optimal, and obese dogs were 24.3 ± 2.7 pg/mL, 86.1 ± 14.7 pg/mL, and 116.2 ± 47.3 pg/mL, respectively. In the thin BC, CSF leptin concentration transiently increased at 4 PM. In the optimal BC, baseline CSF leptin concentration was maintained until 10 PM. In the obese BC, CSF leptin concentration increased from baseline value at 4 PM and 10 PM. Correlation between CSF leptin concentration and fat area was good at all time points. There was a significant negative correlation between the CSF leptin concentration–to–serum leptin concentration ratio and fat area at 4 PM; this correlation was not significant at 8 AM and 10 PM.
Conclusions and Clinical Relevance—Decreased transport of leptin at the blood-brain barrier may be 1 mechanism of leptin resistance in dogs. However, leptin resistance at the blood-brain barrier may not be important in development of obesity in dogs.
Abstract
OBJECTIVE
To compare ultracentrifugation, precipitation, and membrane affinity chromatography methods for isolation of extracellular vesicles (EVs) from canine plasma samples and to identify suitable reference genes for incorporation into a quantitative reverse transcription PCR assay of microRNA expression in plasma EVs of healthy dogs.
ANIMALS
6 healthy Beagles.
PROCEDURES
Plasma samples were obtained from each dog, and EVs were isolated from 0.3 mL of these samples via ultracentrifugation, precipitation, and membrane-affinity chromatographic methods. Nanoparticle tracking analysis was performed to determine the concentration and size distribution of EVs isolated by the ultracentrifugation method. Expression levels (cycle threshold values) of 4 microRNAs (let-7a, miR-16, miR-26a, and miR-103) were then compared by means of quantitative reverse transcription PCR assay. Three statistical programs were used to identify the microRNAs most suitable for use as reference genes.
RESULTS
Results indicated that ultracentrifugation was the most stable of all 3 methods for isolating microRNAs from 0.3 mL of plasma. Nanoparticle tracking revealed that EV samples obtained by the ultracentrifugation method contained a mean ± SD of approximately 1.59 × 1010 vesicles/mL ± 4.2 × 108 vesicles/mL. Of the 4 microRNAs in plasma EVs isolated by ultracentrifugation, miR-103 was the most stable.
CONCLUSIONS AND CLINICAL RELEVANCE
The ultracentrifugation method has potential as a stable method for isolating EVs from canine plasma samples with a high recovery rate, and miR-103 may provide the most stable reference gene for normalizing microRNA expression data pertaining to plasma EVs isolated by ultracentrifugation.
Abstract
OBJECTIVE
To measure expression of microRNAs (miRNAs) in plasma and in extracellular vesicles (EVs) derived from plasma for dogs with glioma and dogs with other brain diseases.
SAMPLE
Plasma samples from 11 dogs with glioma and 19 control dogs with various other brain diseases.
PROCEDURES
EVs were isolated from plasma samples by means of ultracentrifugation. Expression of 4 candidate reference miRNAs (let-7a, miR-16, miR-26a, and miR-103) and 4 candidate target miRNAs (miR-15b, miR-21, miR-155, and miR-342-3p) was quantified with reverse transcription PCR assays. Three software programs were used to select the most suitable reference miRNAs from among the 4 candidate reference miRNAs. Expression of the 4 target miRNAs was then calculated relative to expression of the reference genes in plasma and EVs, and relative expression was compared between dogs with glioma and control dogs with other brain diseases.
RESULTS
The most suitable reference miRNAs were miR-16 for plasma and let-7a for EVs. Relative expression of miR-15b in plasma and in EVs was significantly higher in dogs with glioma than in control dogs. Relative expression of miR-342-3p in EVs was significantly higher in dogs with glioma than in control dogs.
CONCLUSIONS AND CLINICAL RELEVANCE
Results suggested that miR-15b and miR-342-3p have potential as noninvasive biomarkers for differentiating glioma from other intracranial diseases in dogs. However, more extensive analysis of expression in specific glioma subtypes and grades, compared with expression in more defined control populations, will be necessary to assess their clinical relevance.