Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Rubén N. González x
  • Refine by Access: All Content x
Clear All Modify Search

Objective—

To determine whether particular dairy management practices and herd characteristics were associated with somatic cell count (See) of bulk tank milk.

Design—

Analysis of records.

Sample Population—

Milk samples collected from 59,435 cows housed in 843 dairy herds between March 1992 and June 1994.

Procedure—

Results of bacterial culture of milk samples and data on farm housing, sanitation, milking system, and management were collected. Multiple regression analysis was used to determine sources of variation in bulk tank milk see among herds.

Results—

Prevalence of Streptococcus agalactiae and Staphylococcus aureus mastitis was associated with bulk tank milk SCC. In herds free of S agalactiae mastitis, prevalence of S aureus and Corynebacterium bovis mastitis were important. For herds without S agalactiae mastitis, use of sawdust bedding was associated with a decrease in SCC and a dirty loose housing area was associated with an increase. Increased milk production, repeated mastitis control visits, and use of particular predip compounds were significantly associated with reduced SCC in all herds, regardless of whether any cows in the herd had S agalactiae mastitis, In herds with S agalactiae mastitis, use of iodine (certain concentrations), chlorhexidine, peroxide, or sodium chlorite-lactic acid as a predip was associated with a decrease in SCC. Only use of sodium chlorite-lactic acid predip was significantly associated with a decrease in SCC in herds without S agalactiae mastitis.

Clinical Implications—

Important factors associated with bulk tank milk SCC were prevalence of S agalactiae and S aureus mastitis. careful application of particular predip compounds. avoiding a dirty loose housing area, and use of a service to regularly monitor prevalence of mastitis in the herd: (J Am Vet Med Assoc 1997;210:1466-1469)

Free access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To elucidate the ecology of Listeria monocytogenes on dairy cattle farms by determining the prevalence of the organism in various samples.

Sample Population—Dairy cattle operations in central New York State.

Procedures—A repeated cross-sectional study design was used. Various samples were obtained from cattle (feces, composite udder milk, and udders), their environment (silage, feed bunks, water troughs, and floor bedding), inline milk filters, and bulk tank milk from 50 dairy farms. Samples were tested for L monocytogenes by use of a PCR assay with 2 steps of bacterial enrichment. Data were analyzed with mixed-effect logistic regression to control for the potential clustering of L monocytogenes on particular farms.

ResultsL monocytogenes was detected in composite milk, udder swab samples, and fecal samples at prevalences of 13%, 19%, and 43%, respectively. There was no significant clustering of the pathogen by farm. Listeria monocytogenes was more common in samples obtained from cattle and the environment during winter and summer versus the fall. The prevalence of L monocytogenes was twice as high in samples obtained from feed bunks, water troughs, and bedding, compared with that in samples obtained from silage (65%, 66%, 55%, and 30%, respectively).

Conclusions and Clinical RelevanceL monocytogenes was more prevalent in samples obtained from dairy cattle and their environment than in milk samples. Strategies to control the pathogen in dairy operations should focus on cow hygiene and sanitary milk harvesting on the farm.

Full access
in American Journal of Veterinary Research

Abstract

Objectives—To differentiate early (1 to 8 days) from late (9 to 14 days) inflammatory phases and assess relationships between leukocyte phenotype and bacterial recovery in cows with Staphylococcus aureus-induced mastitis.

Animals—10 first-lactation Holstein cows.

Procedure—Blood and milk samples were collected from 4 or 6 cows before and after intramammary infusion of sterile broth or S aureus, respectively. Flow cytometric expression of CD3 and CD11b antigens on blood and milk leukocytes, leukocyte differential counts, bacterial counts in milk, and somatic cell counts were determined longitudinally.

Results—Density of CD3 molecules decreased on blood lymphocytes and increased on milk lymphocytes after infusion of bacteria. Density of CD11b molecules on lymphocytes and phagocytes and percentage of CD11b+ lymphocytes in milk increased significantly after infusion; maximum values were achieved during the early inflammatory phase. Density of CD3 and CD11b molecules on milk lymphocytes and macrophages, respectively, 1 day after inoculation were negatively correlated with bacterial recovery on day 1 and days 9 to 14, respectively. Density of CD11b molecules on milk macrophages and the ratios of phagocyte to lymphocyte percentages and polymorphonuclear cell to macrophage percentages in milk differentiated the early from the late inflammatory phase.

Conclusions and Clinical Relevance—Activation of bovine mammary gland macrophages and T cells in response to intramammary infusion of S aureus was associated with an inability to culture this bacterium from milk. Identification of specific inflammatory phases of S aureus-induced mastitis in cows may allow for the design of more efficacious treatment and control programs. (Am J Vet Res 2001;62:1840–1851)

Full access
in American Journal of Veterinary Research

Abstract

Objectives—To assess automated ribotyping for characterization of Pseudomonas aeruginosa isolates and to identify their type prevalence and geographic distribution.

Sample Population—39 human and 56 ruminant P aeruginosa isolates.

Procedures—Isolates were identified by use of bacteriologic techniques and automated PvuII-based ribotyping. Susceptibility to antimicrobials was tested in vitro. Data were analyzed for index of discrimination; prevalence ratio; geographic distribution of ribotypes found only in humans, only in cows, or only in goats (single-host ribotypes); and geographic distribution of ribotypes found in humans and ruminants (multihost ribotypes).

Results—All isolates were typeable (45 ribotypes, 35 single-host ribotypes). Ribotyping index of discrimination was 0.976. More isolates (45.3%) than expected yielded multihost ribotypes (22% of all ribotypes). Although 8.6% of single-host ribotypes were found in 4 or more isolates, 60% of multihost ribotypes were found in 4 or more isolates. Ninety percent of multihost ribotypes were isolated from different geographic areas, whereas 3.0% of singlehost ribotypes were isolated from different geographic areas. All ruminant isolates were susceptible to gentamicin and polymyxin B. In contrast, antibiogram profiles differed for human isolates from different geographic areas. Susceptibility to antimicrobials differentiated 6 isolates not distinguished by ribotyping.

Conclusions and Clinical Relevance—Automated ribotyping with PvuII discriminated more isolates than in vitro antimicrobial susceptibility. In combination, both tests provided more information than either test alone. Given the greater prevalence and geographic distribution of multihost ribotypes, immunocompromised humans and lactating ruminants may have a greater risk for disease if exposed to multihost P aeruginosa ribotypes, compared with single-host ribotypes. (Am J Vet Res 2001;62:864–870)

Full access
in American Journal of Veterinary Research

Abstract

Objective

To evaluate efficacy of florfenicol treatment for bovine mastitis caused by Streptococcus agalactiae, Staphylococcus aureus, nonagalactiae streptococci, coagulase-negative staphylococci, Escherichia coli, Klebsiella sp, and others.

Design

Double blind study with cases randomly assigned to 1 of 2 treatment groups.

Sample Population

861 cows/10 commercial dairy farms.

Procedures

Experimental (750 mg of florfenicol) or control (200 mg of cloxacillin) treatment was administered by intramammary infusion every 12 hours for 3 treatments to all cases. Treatments were randomly assigned, identified only by numerical labels. To retain blinding, the longer withdrawal time was adhered to for all cases. Cases remained in the study only if there was no other treatment. Quarter samples were recultured 14, 21, and 28 days later. If all samples after day 1 were culture negative, the case was defined as cured. If only 1 of the follow-up results was positive, the case was considered cured if the day-28 somatic cell count was < 300,000/ml. Failure of treatment was defined as 2 or more culture-positive follow-up samples.

Results

Florfenicol and cloxacillin did not differ significantly in efficacy versus clinical (n = 85) or subclinical (n = 71) bovine mastitis, or for any etiologic agent (χ2). Overall cure rates for mastitis were: Str agalactiae, 5 of 8 (63%); Sta aureus, 5 of 54 (9%); Streptococcus sp, 16 of 35 (46%); Staphylococcus sp, 7 of 33 (21 %); E coli, 5 of 11 (46%); Klebsiella sp, 3 of 6 (50%); others, 1 of 9 (11%); and all cases, 42 of 156 (27%).

Conclusions

Florfenicol did not offer any advantage over cloxacillin in efficacy against bovine mastitis. Overall cure rates were low. As with most mastitis treatment regimens, poor efficacy may be partly attributable to the short duration of treatment. (Am J Vet Res 1996;57:526–528)

Free access
in American Journal of Veterinary Research

Abstract

Objectives

To develop a reference database for characterization of bovine Staphylococcus aureus and Streptococcus agalactiae strains by automated ribotyping and to use it to assess the discriminatory power of this typing procedure and the geographic distribution of Sta aureus and Str agalactiae strains in New York state dairy herds.

Sample Population

22 commercial dairy herds.

Procedure

Isolates of Sta aureus and Str agalactiae from bovine milk were identified by standard bacteriologic procedures, then typed by automated ribotyping. Antimicrobial susceptibility of isolates was tested in vitro. Two indicators made from the data were percentage of farms with multiple ribotypes and percentage of single ribotypes found in several geographic regions. Standard bacteriologic diagnosis, automated ribotyping, and determination of antibiograms (Kirby-Bauer method) also were done.

Results

Of 50 Sta aureus and 44 Str agalactiae isolates from composite milk samples of 12 and 10 herds, respectively, 18 and 14 ribotypes, respectively, were identified. The discriminatory power of automated ribotyping was approximately 0.96 (Hunter-Gaston's formula). A higher percentage of herds with Sta aureus had multiple ribotypes. The most common Sta aureus ribotypes tended to have broader geographic distribution. Some Sta aureus ribotypes were significantly associated with antibiotic resistance profiles.

Conclusions

Automated ribotyping appears to characterize bovine strains of bacteria associated with intramammary infections with a high discriminatory index. Potential applications include identification of strains that appear to have broad geographic distribution suggesting interfarm transfer, discrimination between recurrent versus new intramammary infections (ie, for control of Str agalactiae and Sta aureus), and evaluation of antibiotic therapy. (Am J Vet Res 1997;58:482–487)

Free access
in American Journal of Veterinary Research