Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Robin Bell x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To define scintigraphic, physical examination, and scapular ultrasonographic findings consistent with bone fragility syndrome (BFS) in horses; develop indices of BFS severity; and assess accuracy of physical examination, scapular ultrasonography, and serum biomarkers for BFS diagnosis.

Design—Prospective case-control study.

Animals—48 horses (20 horses with BFS and 28 control horses).

Procedures—Horses underwent forelimb scintigraphic evaluation, physical examination, scapular ultrasonography, and serum collection. Scintigraphy was used as a reference standard to which physical examination, scapular ultrasonography, and concentrations of serum biomarkers (carboxy-terminal telopeptide of collagen crosslinks and bone-specific alkaline phosphatase activity) were compared for assessing accuracy in BFS diagnosis.

Results—A diagnosis of BFS was strongly supported on scintigraphy by ≥ 2 regions of increased radiopharmaceutical uptake, including 1 region in the scapular spine and 1 region in the scapular body or ribs; on physical examination by lateral bowing of the scapulae; and on ultrasonography by widening of the scapular spine. None of the tests evaluated were accurate enough to replace scintigraphy for mild disease; however, physical examination and scapular ultrasonography were accurate in horses with moderate to severe BFS. Serum biomarkers were not accurate for BFS diagnosis.

Conclusions and Clinical Relevance—Scintigraphy remained the most informative diagnostic modality for BFS, providing insight into disease severity and distribution; however, physical examination and scapular ultrasonographic abnormalities were diagnostic in horses with moderate to severe disease. Proposed severity indices classified the spectrum of disease manifestations. Clearly defined criteria for interpretation of diagnostic tests aid in the detection of BFS. Severity indices may be useful for assessing disease progression and response to treatment.

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To assess clinical outcomes and scintigraphic findings in horses with a bone fragility disorder (BFD) treated with zoledronate (a nitrogen-containing bisphosphonate).

Design—Prospective uncontrolled clinical trial.

Animals—10 horses with evidence of a BFD.

Procedures—Signalment, history, and geographic location of horses' home environments were recorded. Physical examinations, lameness evaluations, and nuclear scintigraphy were performed. Diagnosis of a BFD was made on the basis of results of clinical and scintigraphic examination. Each horse was treated with zoledronate (0.075 mg/kg [0.034 mg/lb, IV, once]) at the time of diagnosis. Horses were reevaluated 6 months after treatment.

Results—Affected horses were from the central and coastal regions of California and had ≥ 1 clinical sign of the disorder; these included scapular deformation (n = 2), lordosis (1), nonspecific signs of musculoskeletal pain (1), and lameness that could not be localized to a specific anatomic region (9). All horses had multiple sites of increased radiopharmaceutica uptake during initial scintigraphic evaluation of the axial skeleton and bones of 1 or both forelimbs. Six months after treatment, clinical improvement (defined as improvement in the lameness score, resolution of signs of musculoskeletal pain, or both) was detected in 9 of 10 horses; scintigraphic uptake was unchanged (n = 2) or subjectively decreased (8). No adverse effects attributed to zoledronate treatment were detected.

Conclusions and Clinical Relevance—Treatment with zoledronate appeared to be useful in improving clinical outcome and scintigraphic findings in horses with a BFD; however, future placebo-controlled studies are necessary to accurately determine efficacy and long-term safety.

Full access
in Journal of the American Veterinary Medical Association