Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Robert C. Layton x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To investigate the effects of sterile fine dust aerosol inhalation on antibody responses and lung tissue changes induced by Mucor ramosissimus or Trichoderma viride spores following intratracheal inoculation in goats.

Animals—36 weanling Boer-Spanish goats.

Procedures—6 goats were allocated to each of 2 M ramosissimus–inoculated groups, 2 T viride–inoculated groups, and 2 control (tent or pen) groups. One of each pair of sporetreated groups and the tent control group were exposed 7 times to sterilized fine feedyard dust (mean ± SD particle diameter, < 7.72 ± 0.69 μm) for 4 hours in a specially constructed tent. Goats in the 4 fungal treatment groups were inoculated intratracheally 5 times with a fungal spore preparation (30 mL), whereas tent control goats were intratracheally inoculated with physiologic saline (0.9% NaCl) solution (30 mL). Pen control goats were not inoculated or exposed to dust. Goats received an IV challenge with equine RBCs to assess antibody responses to foreign antigens. Postmortem examinations were performed at study completion (day 68) to evaluate lung tissue lesions.

Results—5 of 7 deaths occurred between days 18 and 45 and were attributed to fine dust exposures prior to fungal treatments. Fine dust inhalation induced similar lung lesions and precipitating antibodies among spore-treated goats. Following spore inoculations, dust-exposed goats had significantly more spores per gram of consolidated lung tissue than did their nonexposed counterparts.

Conclusions and Clinical Relevance—Fine dust inhalation appeared to decrease the ability of goats to successfully clear fungal spores from the lungs following intratracheal inoculation.

Restricted access
in American Journal of Veterinary Research


Objective—To compare the virulence of spores of 7 fungi by tracheal inoculation of goats following exposure of goats to an aerosol of sterilized feedyard dust.

Animals—54 weanling Boer-Spanish goats.

Procedure—A prospective randomized controlled study was conducted. There were 7 fungal treatment groups, a tent control group, and a pen control group (n = 6 goats/group). Goats in the 7 treatment and tent control groups were exposed to autoclaved aerosolized feedyard dust for 4 hours in a specially constructed tent. Goats in the 7 treatment groups were then inoculated intratracheally with 30 mL of a fungal spore preparation, whereas tent control goats were intratracheally inoculated with 30 mL of physiologic saline (0.9% NaCl) solution. These treatments were repeated each week for 6 weeks.

Results—Severity of pathologic changes differed significantly among the 7 fungal treatment groups as determined on the basis of gross atelectatic and consolidated lung lesions and histologic lesions of the lungs. Descending order for severity of lesions was Mucor ramosissimus, Trichoderma viride, Chaetomium globosum, Stachybotrys chartarum, Aspergillus fumigatus, Penicillium chrysogenum, and Monotospora lanuginosa. Trichoderma viride spores were the most invasive and were isolated from the bronchial lymph nodes and thoracic fluid of all 6 goats administered this organism. Spores were observedhistologically in lung tissues harvested 72 hours after inoculation from all treatment groups.

Conclusions and Clinical Relevance—4 of 7 fungal spore types induced significantly larger lung lesions, compared with those induced by the other 3 spore types or those evident in control goats. (Am J Vet Res 2005;66:615–622)

Restricted access
in American Journal of Veterinary Research