Search Results
You are looking at 1 - 3 of 3 items for
- Author or Editor: Richard L. Wallace x
- Refine by Access: All Content x
Abstract
Objective—To estimate seroprevalence of bluetongue virus (BTV) and the geographic distribution of seropositive cattle herds in Illinois and western Indiana.
Sample Population—10,585 serum samples obtained from cattle in 60 herds during 3 transmission seasons (2000 through 2002).
Procedures—In a longitudinal study, serum samples were tested for BTV antibodies by use of a competitive ELISA. Four geographic zones were created by use of mean minimum January temperature. A multivariable mixed-effects logistic regression model with a random effect for herd was used to estimate seropositive risk for zone, age of cattle, herd type, and transmission season.
Results—Overall, BTV antibodies were detected in 156 (1.5%) samples. Estimated seroprevalence in 2000, 2001, and 2002 was 1.49%, 0.97%, and 2.18%, respectively. Risk of being seropositive for BTV was associated with geographic zone and age. Seroprevalence increased progressively from northern to southern zones, with no evidence of BTV infection in the northernmost zone. In the southernmost zone, annual seroprevalence ranged from 8.65% to 11.00%. Adult cattle were 2.35 times as likely as juvenile cattle to be seropositive.
Conclusions and Clinical Relevance—Overall seroprevalence was lower than has been reported for Illinois cattle. Bluetongue virus antibodies were distributed heterogeneously in this region. Only in the southernmost zone was seroprevalence consistently > 2%. Regionalization of BTV risk based on state borders does not account for such variability. Serologic data could be combined with landscape, climate, and vector data to develop predictive models of BTV risk within transitional regions of the United States.
Abstract
Objective—To estimate seroprevalence of antibodies against the serogroup of epizootic hemorrhagic disease viruses (EHDVs) and describe spatial distribution of antibodies against EHDV among cattle herds in Illinois and western Indiana.
Sample Population—9,414 serum samples collected from cattle in 60 herds over 3 transmission seasons.
Procedures—Serum samples were tested for antibodies against EHDV by use of an ELISA. Seroprevalence for 4 zones covering the length of Illinois and parts of Indiana were estimated. A multivariable mixed-effects logistic regression model with a random effect for herd was used to estimate seropositive risk for zone (1 through 4), age (yearling, adult), herd type (beef, dairy), transmission season (2000 to 2002), and zone by year interaction. Isopleth maps of seroprevalence at the herd level were produced.
Results—Antibodies against EHDV were detected in 1,110 (11.8%) samples. Estimated seroprevalence in 2000, 2001, and 2002 was 15.3%, 13.4%, and 5.2%, respectively. Seroprevalence was highest in the southernmost zone and lowest in the northernmost zone, but risk of seropositivity for EHDV among and within zones varied by year. Clusters of high seroprevalence in the south, low seroprevalence in the north, and outliers of high and low seroprevalence were detected. Risk mapping revealed areas of higher seroprevalence extending northward along the western and eastern ends of the study region.
Conclusions—Seroprevalence of antibodies against EHDV in cattle was higher in the south than north; however, local complexities existed that were not observed in a serosurvey of antibodies against bluetongue virus from the same cattle population.
Abstract
OBJECTIVE
To evaluate species identification and rabies virus (RABV) characterization among samples from bats submitted for rabies testing in the United States and assess whether a standardized approach to specimen selection for RABV characterization could enhance detection of a sentinel event in virus dissemination among bats.
SAMPLE
United States public health rabies surveillance system data collected in January 2010 through December 2015.
PROCEDURES
The number of rabies-tested bats for which species was reported and the number of RABV-positive samples for which virus characterization would likely provide information regarding introduction of novel RABV variants and translocation and host-shift events were calculated. These specimens were designated as specimens of epizootiological importance (SEIs). Additionally, the estimated test load that public health laboratories could expect if all SEIs underwent RABV characterization was determined.
RESULTS
Species was reported for 74,928 of 160,017 (47%) bats submitted for rabies testing. Identified SEIs were grouped in 3 subcategories, namely nonindigenous bats; bats in southern border states, Florida, Puerto Rico, and the US Virgin Islands; and bats of species that are not commonly found to be inflected with RABV. Annually, 692 (95% CI, 600 to 784) SEIs were identified, of which only 295 (95% CI, 148 to 442) underwent virus characterization. Virus characterization of all SEIs would be expected to increase public health laboratories’ overall test load by 397 (95% CI, 287 to 506) samples each year.
CONCLUSIONS AND CLINICAL RELEVANCE
Species identification and RABV characterization may aid detection of a sentinel event in bat RABV dissemination. With additional resources, RABV characterization of all SEIs as a standardized approach to testing could contribute to knowledge of circulating bat RABV variants.