Search Results

You are looking at 1 - 7 of 7 items for

  • Author or Editor: Richard B. Chipman x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine direct and indirect costs associated with raccoon rabies incidents involving cattle herds in Hampshire County, WV, in 2008 and Guernsey County, Ohio, in 2010.

Design—Ex post cost analysis.

Animals—1 cattle herd in Hampshire County, WV, in 2008 and 1 cattle herd in Guernsey County, Ohio, in 2010.

Procedures—Data were collected for each incident through telephone and email interviews with 16 federal, state, and county agency personnel involved in the case investigations and coordinated responses for rabies in the cattle herds. To characterize the economic impact associated with rabies in the 2 cattle herds, cost analysis was conducted with 7 cost variables (salary and benefits for personnel involved in the response, human postexposure prophylaxis, indirect patient costs, rabies diagnostic testing, cattle carcass disposal, market value of euthanized cattle, and enhanced rabies surveillance). Estimates of direct costs were determined on the basis of agency records and other relevant data obtained from notes and reports made by agency staff at the time of the incident and from a review of the literature.

Results—Primary costs included the market value of euthanized cattle ($51,461 in West Virginia; $12,561 in Ohio), human postexposure prophylaxis ($17,959 in West Virginia; $11,297 in Ohio), and salary and benefits for personnel involved in the response ($19,792 in West Virginia; $14,496 in Ohio).

Conclusions and Clinical Relevance—These results should provide a basis for better characterization of the economic impact of wildlife rabies in cattle in the United States.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE To describe rabies and rabies-related events occurring during 2017 in the United States.

DESIGN Cross-sectional analysis of passive surveillance data.

ANIMALS All animals submitted for laboratory diagnosis of rabies in the United States during 2017.

PROCEDURES State and territorial public health departments provided data on animals submitted for rabies testing in 2017. Data were analyzed temporally and geographically to assess trends in domestic and sylvatic animal rabies cases.

RESULTS During 2017, 52 jurisdictions reported 4,454 rabid animals to the CDC, representing a 9.3% decrease from the 4,910 rabid animals reported in 2016. Of the 4,454 cases of animal rabies, 4,055 (91.0%) involved wildlife species. Relative contributions by the major animal groups were as follows: 1,433 (32.2%) bats, 1,275 (28.6%) raccoons, 939 (21.1%) skunks, 314 (7.0%) foxes, 276 (6.2%) cats, 62 (1.4%) dogs, and 36 (0.8%) cattle. There was a 0.4% increase in the number of samples submitted for testing in 2017, compared with the number submitted in 2016. Two human rabies deaths were reported in 2017, compared with none in 2016.

CONCLUSIONS AND CLINICAL RELEVANCE The overall number of reported cases of animal rabies has decreased over time. Laboratory testing of animals suspected to be rabid remains a critical public health function and continues to be a cost-effective method to directly influence human rabies postexposure prophylaxis recommendations.

Full access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE

To provide epidemiological information on animal and human cases of rabies in the US during 2020 and summaries of 2020 rabies surveillance for Canada and Mexico.

ANIMALS

All animals submitted for laboratory diagnosis of rabies in the US during 2020.

PROCEDURES

State and territorial public health departments and USDA Wildlife Services provided 2020 rabies surveillance data. Data were analyzed temporally and geographically to assess trends in domestic and wildlife rabies cases.

RESULTS

During 2020, 54 jurisdictions submitted 87,895 animal samples for rabies testing, of which 85,483 (97.3%) had a conclusive (positive or negative) test result. Of these, 4,479 (5.2%) tested positive for rabies, representing a 4.5% decrease from the 4,690 cases reported in 2019. Texas (n = 580 [12.9%]), Pennsylvania (371 [8.3%]), Virginia (351 [7.8%]), New York (346 [7.7%]), North Carolina (301 [6.7%]), New Jersey (257 [5.7%]), Maryland (256 [5.7%]), and California (248 [5.5%]) together accounted for > 60% of all animal rabies cases reported in 2020. Of the total reported rabid animals, 4,090 (91.3%) involved wildlife, with raccoons (n = 1,403 [31.3%]), bats (1,400 [31.3%]), skunks (846 [18.9%]), and foxes (338 [7.5%]) representing the primary hosts confirmed with rabies. Rabid cats (288 [6.4%]), cattle (43 [1.0%]), and dogs (37 [0.8%]) accounted for 95% of rabies cases involving domestic animals in 2020. No human rabies cases were reported in 2020.

CONCLUSIONS AND CLINICAL RELEVANCE

For the first time since 2006, the number of samples submitted for rabies testing in the US was < 90,000; this is thought to be due to factors related to the COVID-19 pandemic, as similar decreases in sample submission were also reported by Canada and Mexico.

Open access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE

To provide epidemiological information on animal and human cases of rabies occurring in the United States during 2019 and summaries of 2019 rabies surveillance for Canada and Mexico.

ANIMALS

All animals submitted for laboratory diagnosis of rabies in the United States during 2019.

PROCEDURES

State and territorial public health departments and USDA Wildlife Services provided data on animals submitted for rabies testing in the United States during 2019. Data were analyzed temporally and geographically to assess trends in domestic and wildlife rabies cases.

RESULTS

During 2019, 53 jurisdictions submitted 97,523 animal samples for rabies testing, of which 94,770 (97.2%) had a conclusive (positive or negative) test result. Of these, 4,690 tested positive for rabies, representing a 5.3% decrease from the 4,951 cases reported in 2018. Texas (n = 565 [12.0%]), New York (391 [8.3%]), Virginia (385 [8.2%]), North Carolina (315 [6.7%]), California (276 [5.9%]), and Maryland (269 [5.7%]) together accounted for almost half of all animal rabies cases reported in 2019. Of the total reported rabid animals, 4,305 (91.8%) were wildlife, with raccoons (n = 1,545 [32.9%]), bats (1,387 [29.6%]), skunks (915 [19.5%]), and foxes (361 [7.7%]) as the primary species confirmed with rabies. Rabid cats (n = 245 [5.2%]) and dogs (66 [1.4%]) accounted for > 80% of rabies cases involving domestic animals in 2019. No human rabies cases were reported in 2019.

CONCLUSIONS AND CLINICAL RELEVANCE

The overall number of animal rabies cases decreased from 2018 to 2019. Laboratory diagnosis of rabies in animals is critical to ensure that human rabies postexposure prophylaxis is administered judiciously.

Full access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE

To describe rabies and rabies-related events occurring during 2018 in the United States.

ANIMALS

All animals submitted for laboratory diagnosis of rabies in the United States during 2018.

PROCEDURES

State and territorial public health departments provided data on animals submitted for rabies testing in 2018. Data were analyzed temporally and geographically to assess trends in domestic animal and wildlife rabies cases.

RESULTS

During 2018, 54 jurisdictions reported 4,951 rabid animals to the CDC, representing an 11.2% increase from the 4,454 rabid animals reported in 2017. Texas (n = 695 [14.0%]), Virginia (382 [7.7%]), Pennsylvania (356 [7.2%]), North Carolina (332 [6.7%]), Colorado (328 [6.6%]), and New York (320 [6.5%]) together accounted for almost half of all rabid animals reported in 2018. Of the total reported rabies cases, 4,589 (92.7%) involved wildlife, with bats (n = 1,635 [33.0%]), raccoons (1,499 [30.3%]), skunks (1,004 [20.3%]), and foxes (357 [7.2%]) being the major species. Rabid cats (n = 241 [4.9%]) and dogs (63 [1.3%]) accounted for > 80% of rabid domestic animals reported in 2018. There was a 4.6% increase in the number of samples submitted for testing in 2018, compared with the number submitted in 2017. Three human rabies deaths were reported in 2018, compared with 2 in 2017.

CONCLUSIONS AND CLINICAL RELEVANCE

The overall number of animal rabies cases increased from 2017 to 2018. Laboratory diagnosis of rabies in animals is critical to ensure that human rabies postexposure prophylaxis is administered judiciously.

Full access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE

To evaluate species identification and rabies virus (RABV) characterization among samples from bats submitted for rabies testing in the United States and assess whether a standardized approach to specimen selection for RABV characterization could enhance detection of a sentinel event in virus dissemination among bats.

SAMPLE

United States public health rabies surveillance system data collected in January 2010 through December 2015.

PROCEDURES

The number of rabies-tested bats for which species was reported and the number of RABV-positive samples for which virus characterization would likely provide information regarding introduction of novel RABV variants and translocation and host-shift events were calculated. These specimens were designated as specimens of epizootiological importance (SEIs). Additionally, the estimated test load that public health laboratories could expect if all SEIs underwent RABV characterization was determined.

RESULTS

Species was reported for 74,928 of 160,017 (47%) bats submitted for rabies testing. Identified SEIs were grouped in 3 subcategories, namely nonindigenous bats; bats in southern border states, Florida, Puerto Rico, and the US Virgin Islands; and bats of species that are not commonly found to be inflected with RABV. Annually, 692 (95% CI, 600 to 784) SEIs were identified, of which only 295 (95% CI, 148 to 442) underwent virus characterization. Virus characterization of all SEIs would be expected to increase public health laboratories’ overall test load by 397 (95% CI, 287 to 506) samples each year.

CONCLUSIONS AND CLINICAL RELEVANCE

Species identification and RABV characterization may aid detection of a sentinel event in bat RABV dissemination. With additional resources, RABV characterization of all SEIs as a standardized approach to testing could contribute to knowledge of circulating bat RABV variants.

Full access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE

To evaluate rabies virus (RABV) characterization data obtained from animal specimens submitted to the US public health rabies surveillance system and propose a standardized approach to sample selection for RABV characterization that could enhance early detection of important rabies epizootic events in the United States.

SAMPLE

United States public health rabies surveillance system data collected from January 1, 2010, through December 31, 2015.

PROCEDURES

Data were reviewed to identify RABV-positive specimens for which virus characterization would likely provide information regarding any of 4 overarching events (discovery of novel variants, translocation of RABV variants, host-shift events, and any unusual rabies-related event) that could substantially alter animal rabies epizootiology in the United States. These specimens were designated as specimens of epizootiological importance (SEIs). Estimates of the additional number of specimens that public health laboratories could expect to process each year if all SEIs underwent RABV characterization were calculated.

RESULTS

During the 6-year period, the mean annual number of SEIs was 855 (95% CI, 739 to 971); the mean number of SEIs that underwent virus characterization was 270 (95% CI, 187 to 353). Virus characterization of all SEIs would be expected to increase the public health laboratories’ test load by approximately 585 (95% CI, 543 to 625) specimens/y.

CONCLUSIONS AND CLINICAL RELEVANCE

Prioritization of RABV characterization of SEIs may improve early detection of rabies events associated with RABV host shifts, variant translocations, and importation. Characterization of SEIs may help refine wildlife rabies management practices. Each public health laboratory should evaluate testing of SEIs to ensure diagnostic laboratory capacity is not overstretched.

Full access
in Journal of the American Veterinary Medical Association