Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Ray M. Kaplan x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the prevalence and clinical implications of anthelmintic resistance in cyathostomes of horses.

Design—Prospective study.

Animals—80 horses on 10 farms in a 5-county region of northeast Georgia.

Procedure—On each farm, horses were stratified in descending order according to pretreatment fecal egg count (FEC), blocked into groups of 4, and then randomly assigned to 1 of 4 treatment groups: no treatment (controls), and treatment with pyrantel pamoate, fenbendazole, or ivermectin. Fecal samples were collected 24 hours prior to treatment and 2, 4, and 6 weeks after treatment for determination of FEC. Mean percentage of reduction in FEC was then calculated for each treatment group. For horses from each farm, the efficacy of each anthelmintic was categorized on the basis of mean percentage of reduction in FEC at 2 weeks after treatment (< 80% reduction = ineffective; 80 to 90% reduction = equivocal; and > 90% reduction = effective).

Results—Pyrantel pamoate was effective at reducing FEC in horses from 7 farms, ineffective in horses from 2 farms, and equivocal in horses from 1 farm. Fenbendazole was ineffective at reducing FEC in horses from 9 farms and equivocal in horses from 1 farm. Ivermectin was effective at reducing FEC in horses from all 10 farms.

Conclusions and Clinical Relevance—Results suggest that cyathostome resistance to fenbendazole is highly prevalent, and resistance to pyrantel pamoate is high enough to warrant concern. Resistance to ivermectin was not detected. On the basis of these data, it appears that ivermectin continues to be fully effective in horses. However, too few farms were used in this study to determine the prevalence of cyathostome resistance to ivermectin. Therefore, the efficacy of ivermectin should continue to be monitored closely. (J Am Vet Med Assoc 2001;218:1957–1960)

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine prevalence of resistance to all anthelmintics that are commonly used to treat gastrointestinal nematodes (GINs) in goats.

Design—Prospective study.

Animals—777 goats.

Procedure—On each farm, goats were assigned to 1 of 5 treatment groups: untreated controls, albendazole (20 mg/kg [9.0 mg/lb], PO, once), ivermectin (0.4 mg/kg [0.18 mg/lb], PO, once), levamisole (12 mg/kg [5.4 mg/lb], PO, once), or moxidectin (0.4 mg/kg, PO, once), except on 3 farms where albendazole was omitted. Fecal samples were collected 2 weeks after treatment for determination of fecal egg counts (FECs), and percentage reductions were calculated by comparing data from anthelmintic-treated and control groups. Nematode populations were categorized as susceptible, suspected resistant, or resistant by use of guidelines published by the World Association for the Advancement of Veterinary Parasitology.

Results—Resistance to albendazole was found on 14 of 15 farms, and resistance to ivermectin, levamisole, and moxidectin was found on 17, 6, and 1 of 18 farms, respectively. Suspected resistance to levamisole and moxidectin was found on 4 and 3 farms, respectively. Resistance to multiple anthelmintics (albendazole and ivermectin) was found on 14 of 15 farms and to albendazole, ivermectin, and levamisole on 5 of 15 farms. Mean overall FEC reduction percentages for albendazole, ivermectin, levamisole, and moxidectin were 67, 54, 94, and 99%, respectively.

Conclusions and Clinical Relevance—Anthelmintic resistance in GINs of goats is highly prevalent in the southern United States. The high prevalence of resistance to multiple anthelmintics emphasizes the need for reexamination of nematode control practices. (J Am Vet Med Assoc 2003;223:495–500)

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To compare larvicidal regimens of fenbendazole and moxidectin for reduction and suppression of cyathostomin fecal egg counts (FEC) in a transient herd of embryo transfer–recipient mares.

Design—Randomized, complete block, clinical trial.

Animals—120 mares from 21 states, residing on 1 farm.

Procedures—An initial fecal sample was collected from each mare; mares with an FEC ≥ 200 eggs/g were assigned to treatment groups. Eighty-two horses received fenbendazole (10.0 mg/kg [4.5 mg/lb], PO, q 24 h for 5 days) or moxidectin (0.4 mg/kg [0.18 mg/lb], PO, once); FEC data were analyzed 14, 45, and 90 days after treatment.

Results—Mean FEC reduction was 99.9% for moxidectin-treated mares and 41.9% for fenbendazole-treated mares 14 days after treatment. By 45 days, mean FEC of fenbendazole-treated mares exceeded pretreatment counts; however, FECs of moxidectin-treated mares remained suppressed below pretreatment values for the duration of the 90-day study. Fecal egg counts were significantly different between groups at 14, 45, and 90 days after treatment.

Conclusions and Clinical Relevance—Failure of the 5-day regimen of fenbendazole to adequately reduce or suppress FEC suggested inadequate adulticidal and larvicidal effects. In contrast, a single dose of moxidectin effectively reduced and suppressed FEC for an extended period. Given the diverse geographic origins of study mares, these results are likely representative of cyathostomin-infected mares in much of the United States, confirming previous findings indicating that fenbendazole resistance in cyathostomins is widespread and that moxidectin remains an effective treatment for control of these important parasites.

Full access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE

To evaluate the efficacy of the 3 major classes of anthelmintics used for the treatment of hookworms in dogs in the US and an extralabel treatment with an FDA-approved product for use in cats in a Labrador kennel with a history of persistent hookworm infections.

ANIMALS

22 dogs housed in a single kennel comprised of the following breeds: 19 Labrador Retrievers, 1 English Cocker Spaniel, 1 Chesapeake Bay Retriever, and 1 Boykin Spaniel.

PROCEDURES

We performed a fecal egg count (FEC) reduction test using 22 dogs that were allocated randomly to 1 of 5 treatment groups: pyrantel pamoate (Pyrantel pamoate suspension), fenbendazole (Safe-Guard suspension 10%), milbemycin oxime (Interceptor), moxidectin plus imidacloprid (Advantage Multi), and emodepside plus praziquantel (Profender topical solution for cats). FEC was performed on samples collected on days 0 and 11.

RESULTS

FEC reductions for the milbemycin oxime, moxidectin plus imidacloprid, and emodepside plus praziquantel groups were 43.9%, 57.4%, and 100%, respectively. The FEC increased following treatment for the pyrantel and fenbendazole groups.

CLINICAL RELEVANCE

These data demonstrate that the Ancylostoma caninum infecting the dogs in this kennel are highly resistant to all major anthelmintic classes approved for use in dogs in the US but are susceptible to emodepside. This was the first report of multiple anthelmintic drug–resistant A caninum in a dog kennel that does not involve Greyhounds.

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine prevalence of anthelmintic resistance on sheep and goat farms in the southeastern United States.

Design—Cross-sectional study.

Animals—Sheep and goats from 46 farms in 8 southern states, Puerto Rico, and St Croix in the US Virgin Islands.

Procedures—Parasite eggs were isolated from fecal samples, and susceptibility to benzimidazole, imidathiazole, and avermectin-milbemycin anthelmintics was evaluated with a commercial larval development assay.

ResultsHaemonchus contortus was the most common parasite on 44 of 46 farms; Trichostrongylus colubriformis was the second most commonly identified parasite. Haemonchus contortus from 45 (98%), 25 (54%), 35 (76%), and 11 (24%) farms were resistant to benzimidazole, levamisole, ivermectin, and moxidectin, respectively. Resistance to all 3 classes of anthelmintics was detected on 22 (48%) farms, and resistance to all 3 classes plus moxidectin was detected on 8 farms (17%).

Conclusions and Clinical Relevance—Findings provided strong evidence that anthelmintic resistance is a serious problem on small ruminant farms throughout the southeastern United States. Owing to the frequent movement of animals among regions, the prevalence of resistance in other regions of the United States is likely to also be high. Consequently, testing of parasite eggs for anthelmintic resistance should be a routine part of parasite management on small ruminant farms.

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine prevalence of anthelmintic resistance in cyathostome nematodes of horses in the southern United States.

Design—Cross-sectional study.

Animals—786 horses on 44 farms and stables in Georgia, South Carolina, Florida, Kentucky, and Louisiana.

Procedure—Fecal egg count (FEC) reduction tests were performed on 44 large farms and stables. Horses on each farm were treated with an oral paste formulation of fenbendazole, oxibendazole, pyrantel pamoate, or ivermectin at recommended label dosages. A mixed linear model was fitted to the percentage reduction in FEC, accounting for differences among farms, states, ages, treatments, and treatment by state interactions.

Results—By use of a conservative measure of resistance (< 80% reduction), the percentage of farms with anthelmintic-resistant cyathostomes was 97.7%, 0%, 53.5%, and 40.5% for fenbendazole, ivermectin, oxibendazole, and pyrantel pamoate, respectively. Mean percentage reductions in FEC for all farms were 24.8%, 99.9%, 73.8%, and 78.6% for fenbendazole, ivermectin, oxibendazole, and pyrantel pamoate, respectively. Pairwise contrasts between states for each treatment revealed that in almost all instances, there were no significant differences in results between states.

Conclusions and Clinical Relevance—The prevalence of resistance found in this study was higher than that reported previously, suggesting that anthelmintic resistance in equine cyathostomes is becoming a major problem. Furthermore, data from these 5 southern states, which are geographically and physiographically distinct, were remarkably similar. This suggests that drug resistance in cyathostomes is highly prevalent throughout the entire southern United States and probably nationwide. (J Am Vet Med Assoc 2004;225:903–910)

Full access
in Journal of the American Veterinary Medical Association