Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Rachel C. Bennett x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To quantitate the dose and time-related effects of morphine sulfate on the anesthetic sparing effect of xylazine hydrochloride in halothane-anesthetized horses and determine the associated plasma xylazine and morphine concentration-time profiles.

Animals—6 healthy adult horses.

Procedure—Horses were anesthetized 3 times to determine the minimum alveolar concentration (MAC) of halothane in O2 and characterize the anesthetic sparing effect (ie, decrease in MAC of halothane) by xylazine (0.5 mg/kg, IV) administration followed immediately by IV administration of saline (0.9% NaCl) solution, low-dose morphine (0.1 mg/kg), or high-dose morphine (0.2 mg/kg). Selected parameters of cardiopulmonary function were also determined over time to verify consistency of conditions.

Results—Mean (± SEM) MAC of halothane was 1.05 ± 0.02% and was decreased by 20.1 ± 6.6% at 49 ± 2 minutes following xylazine administration. The amount of MAC reduction in response to xylazine was time dependent. Addition of morphine to xylazine administration did not contribute further to the xylazine-induced decrease in MAC (reductions of 21.9 ± 1.2 and 20.7 ± 1.5% at 43 ± 4 and 40 ± 4 minutes following xylazine-morphine treatments for low-and high-dose morphine, respectively). Overall, cardiovascular and respiratory values varied little among treatments. Kinetic parameters describing plasma concentration-time curves for xylazine were not altered by the concurrent administration of morphine.

Conclusions and Clinical Relevance—Administration of xylazine decreases the anesthetic requirement for halothane in horses. Concurrent morphine administration to anesthetized horses does not alter the anesthetic sparing effect of xylazine or its plasma concentration-time profile. (Am J Vet Res 2004; 65:519–526)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare detomidine hydrochloride and romifidine as premedicants in horses undergoing elective surgery.

Animals—100 client-owned horses.

Procedure—After administration of acepromazine (0.03 mg/kg, IV), 50 horses received detomidine hydrochloride (0.02 mg/kg of body weight, IV) and 50 received romifidine (0.1 mg/kg, IV) before induction and maintenance of anesthesia with ketamine hydrochloride (2 mg/kg) and halothane, respectively. Arterial blood pressure and blood gases, ECG, and heart and respiratory rates were recorded. Induction and recovery were timed and graded.

Results—Mean (± SD) duration of anesthesia for all horses was 104 ± 28 minutes. Significant differences in induction and recovery times or grades were not detected between groups. Mean arterial blood pressure (MABP) decreased in both groups 30 minutes after induction, compared with values at 10 minutes. From 40 to 70 minutes after induction, MABP was significantly higher in detomidine-treated horses, compared with romifidine-treated horses, although more romifidine-treated horses received dobutamine infusions. In all horses, mean respiratory rate ranged from 9 to 11 breaths/min, PaO2 from 200 to 300 mm Hg, PaCO2 from 59 to 67 mm Hg, arterial pH from 7.33 to 7.29, and heart rate from 30 to 33 beats/min, with no significant differences between groups.

Conclusions and Clinical Relevance—Detomidine and romifidine were both satisfactory premedicants. Romifidine led to more severe hypotension than detomidine, despite administration of dobutamine to more romifidine-treated horses. Both detomidine and romifidine are acceptable α2-adrenoceptor agonists for use as premedicants before general anesthesia in horses; however, detomidine may be preferable when maintenance of blood pressure is particularly important. (Am J Vet Res 2001;62:359–363)

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To assess the possible impact of medetomidine on concentrations of alfaxalone in plasma, when coadministered as a constant rate infusion (CRI) to dogs, and to determine the possible impact of medetomidine on the cardiopulmonary effects of alfaxalone during CRI.

ANIMALS 8 healthy adult Beagles.

PROCEDURES 3 treatments were administered in a randomized crossover design as follows: 1 = saline (0.9% NaCl) solution injection, followed in 10 minutes by induction of anesthesia with alfaxalone (loading dose, 2.4 mg/kg; CRI, 3.6 mg/kg/h, for 60 minutes); 2 = medetomidine premedication (loading dose, 4.0 μg/kg; CRI, 4.0 μg/kg/h), followed by alfaxalone (as in treatment 1); and, 3 = medetomidine (as in treatment 2) and MK-467 (loading dose, 150 μg/kg; CRI, 120 μg/kg/h), followed by alfaxalone (as in treatment 1). The peripherally acting α2-adrenoceptor antagonist MK-467 was used to distinguish between the peripheral and central effects of medetomidine. Drugs were administered IV via cephalic catheters, and there was a minimum of 14 days between treatments. Cardiopulmonary parameters were measured for 70 minutes, and jugular venous blood samples were collected until 130 minutes after premedication. Drug concentrations in plasma were analyzed with liquid chromatography–tandem mass spectrometry.

RESULTS The characteristic cardiovascular effects of medetomidine, such as bradycardia, hypertension, and reduction in cardiac index, were obtunded by MK-467. The concentrations of alfaxalone in plasma were significantly increased in the presence of medetomidine, indicative of impaired drug distribution and clearance. This was counteracted by MK-467.

CONCLUSIONS AND CLINICAL RELEVANCE The alteration in alfaxalone clearance when coadministered with medetomidine may be attributed to the systemic vasoconstrictive and bradycardic effects of the α2-adrenoceptor agonist. This could be clinically important because the use of α2-adrenoceptor agonists may increase the risk of adverse effects if standard doses of alfaxalone are used.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To compare cardiovascular effects of premedication with medetomidine alone and with each of 3 doses of MK-467 or after glycopyrrolate in dogs subsequently anesthetized with isoflurane.

ANIMALS 8 healthy purpose-bred 5-year-old Beagles.

PROCEDURES In a randomized crossover study, each dog received 5 premedication protocols (medetomidine [10 μg/kg, IV] alone [MED] and in combination with MK-467 at doses of 50 [MMK50], 100 [MMK100], and 150 [MMK150] μg/kg and 15 minutes after glycopyrrolate [10 μg/kg, SC; MGP]), with at least 14 days between treatments. Twenty minutes after medetomidine administration, anesthesia was induced with ketamine (0.5 mg/kg, IV) and midazolam (0.1 mg/kg, IV) increments given to effect and maintained with isoflurane (1.2%) for 50 minutes. Cardiovascular variables were recorded, and blood samples for determination of plasma dexmedetomidine, levomedetomidine, and MK-467 concentrations were collected at predetermined times. Variables were compared among the 5 treatments.

RESULTS The mean arterial pressure and systemic vascular resistance index increased following the MED treatment, and those increases were augmented and obtunded following the MGP and MMK150 treatments, respectively. Mean cardiac index for the MMK100 and MMK150 treatments was significantly greater than that for the MGP treatment. The area under the time-concentration curve to the last sampling point for dexmedetomidine for the MMK150 treatment was significantly lower than that for the MED treatment.

CONCLUSIONS AND CLINICAL RELEVANCE Results indicated concurrent administration of MK-467 with medetomidine alleviated medetomidine-induced hemodynamic changes in a dose-dependent manner prior to isoflurane anesthesia. Following MK-467 administration to healthy dogs, mean arterial pressure was sustained at acceptable levels during isoflurane anesthesia.

Full access
in American Journal of Veterinary Research