Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: R. Scott Pleasant x
  • Refine by Access: All Content x
Clear All Modify Search


OBJECTIVE To compare the effects of 3 equimolar concentrations of methylprednisolone acetate (MPA), triamcinolone acetonide (TA), and isoflupredone acetate (IPA) on equine articular tissue cocultures in an inflammatory environment.

SAMPLE Synovial and osteochondral explants from the femoropatellar joints of 6 equine cadavers (age, 2 to 11 years) without evidence of musculoskeletal disease.

PROCEDURES From each cadaver, synovial and osteochondral explants were harvested from 1 femoropatellar joint to create cocultures. Cocultures were incubated for 96 hours with (positive control) or without (negative control) interleukin (IL)-1β (10 ng/mL) or with IL-1β and MPA, TA, or IPA at a concentration of 10−4, 10−7, or 10−10M. Culture medium samples were collected from each coculture after 48 and 96 hours of incubation. Concentrations of prostaglandin E2, matrix metalloproteinase-13, lactate dehydrogenase, and glycosaminoglycan were determined and compared among treatments at each time.

RESULTS In general, low concentrations (10−7 and 10−10M) of MPA, TA, and IPA mitigated the inflammatory and catabolic (as determined by prostaglandin E2 and matrix metalloproteinase-13 quantification, respectively) effects of IL-1β in cocultures to a greater extent than the high (10−4M) concentration. Mean culture medium lactate dehydrogenase concentration for the 10−4M IPA treatment was significantly greater than that for the positive control at both times, which was suggestive of cytotoxicosis. Mean culture medium glycosaminoglycan concentration did not differ significantly.

CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that the in vitro effects of IPA and MPA were similar to those of TA at clinically relevant concentrations (10−7 and 10−10M).

Full access
in American Journal of Veterinary Research


Objective—To describe the vascular distribution pattern of contrast medium during intraosseous regional perfusion (IORP) of the distal portion of the equine forelimb.

Sample Population—13 cadaveric forelimbs from 12 horses without forelimb diseases.

Procedures—Serial lateromedial radiographic views were taken of the distal portion of 10 heparinized cadaveric forelimbs at 0, 1, 2, 6, 15, and 30 minutes during IORP of the third metacarpal bone (MCIII) by use of iodinated contrast medium and a tourniquet placed over the proximal portion of MCIII. Vascular regions of interest (ROI) were created for each radiograph. Reviewers identified the presence or absence of contrast medium–induced opacified vessels in all ROI on radiographs. This information was summarized to identify vessel-filling patterns over time. Vessel identification was verified by use of computed tomography angiography and latex perfusion studies on the distal portion of separate cadaveric forelimbs.

Results—During IORP, contrast medium filled the medullary cavity of the MCIII; exited via transcortical vessels; and diffused distally to the remaining arteries and veins of the forelimb, distal to the tourniquet. Maximum vessel and soft tissue opacification occurred in most specimens at 6 and 30 minutes, respectively. Serial radiography vessel patterns matched those of computed tomography images and dissected specimens.

Conclusions and Clinical Relevance—IORP provides a repeatable pattern of vascular distribution in the distal portion of the equine forelimb. To our knowledge, our study provides the first documentation of arterial perfusion by use of IORP; results of previous reports indicate that IORP delivers medications to only the venous vessels of the perfused forelimb.

Full access
in American Journal of Veterinary Research