Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Qian Zhang x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

OBJECTIVE

To establish a method for evaluation of the efficacy of a classical swine fever virus (CSFV) subunit vaccine in rabbits as determined via humoral immune responses to the virus.

ANIMALS

40 specific pathogen–free rabbits.

PROCEDURES

Rabbits were randomly assigned to 4 groups (10 rabbits/group) for SC injection of 0.05, 0.1, and 0.2 mL of a CSFV subunit E2 vaccine (representing 1.15, 2.3, or 4.6 μg of E2 protein/dose, respectively) or saline (0.9% NaCl) solution. Blood samples were collected 21 days after vaccination for measurement of the antibody response against CSFV via ELISA and virus neutralization methods. On the same day, the CSFV Chinese (C) strain was injected into an ear vein. Vaccine efficacy was determined by monitoring of rabbits for pyrexia for 4 days and measurement of viral copies in spleen lysates at the end of the study. Reproducibility of the antibody response was tested with 2 other batches of the vaccine at the minimum immunization dose identified for the initially tested batch.

RESULTS

The E2 protein dose of the initially tested vaccine was positively correlated with the antibody response and protection rate in rabbits. The identified minimum immunization dose per rabbit was 0.1 mL, representing an E2 protein content of approximately 2.3 μg, and reproducibility of the antibody response to vaccination with the 2 other batches at this dose was good.

CONCLUSIONS AND CLINICAL RELEVANCE

A method was established in rabbits for evaluation of the efficacy of a CSFV subunit vaccine that could help in the optimization of later large-scale vaccine production and quality control processes as well as in the clinical application of the vaccine.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE: To investigate the distribution of T-cell markers (CD4 and CD8α) in lymphoid organs of newborn, juvenile, and adult yaks.

ANIMALS: 15 healthy male yaks of various ages from highland plateaus.

PROCEDURES: Yaks were allocated to groups on the basis of age (newborn [1 to 7 days old; n = 5], juvenile [5 to 7 months old; 5], and adult [3 to 4 years old; 5]). The thymus, spleen, 5 mesenteric lymph nodes, and 5 hemal nodes were harvested from each yak within 10 minutes after euthanasia. Morphological characteristics of those lymphoid organs were assessed by histologic examination; expression of CD4 and CD8α mRNAs and proteins were measured by quantitative real-time PCR assay and immunohistochemical staining.

RESULTS: Among the lymphoid organs evaluated, expressions of CD4 and CD8α mRNAs were highest in the thymus in all age groups. In newborn lymphoid organs, CD4 mRNA expression and CD4+ cell distribution were more predominant, whereas in juvenile and adult lymphoid organs, CD8α mRNA expression and CD8α+ cell distribution were more predominant. The CD4+ and CD8α+ cells were mainly located in the cortex and medulla of the thymus, the medulla of the hemal nodes and mesenteric lymph nodes, the periarteriolar lymphoid sheaths, and the red pulp of the spleen.

CONCLUSIONS AND CLINICAL RELEVANCE: Results indicated that the CD4 mRNA expression and CD4+ T-cell distribution in yak lymphoid organs decreased and CD8α mRNA expression and CD8α+ T-cell distribution increased with age. Moreover, CD8α+ cells were present in the follicles of yaks’ secondary lymphoid organs, which differs from findings for other mammals.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To evaluate age-related changes in the morphology and expression of cluster of differentiation 3 (CD3), S100 β, and caspase-3 of the thymus of healthy yaks (Bos grunniens).

ANIMALS 15 healthy male yaks of various ages from highland plateaus.

PROCEDURES Yaks were allocated to 3 groups on the basis of age (newborn [1 to 7 days old; n = 5], juvenile [5 to 7 months old, 5], and adult [3 to 4 years old; 5]) and euthanized. The thymus was harvested from each yak within 10 minutes after euthanasia. Morphological characteristics were assessed by histologic examination and transmission electron microscopy. Expression of CD3, S100 β, and caspase-3 mRNA and protein was measured by quantitative real-time PCR assay, Western blot analysis, and immunohistochemical staining.

RESULTS As age increased, functional thymic tissue was replaced with adipose and connective tissues and the thymic capsule thickened. Expression of CD3 and S100 β mRNA and protein decreased with age, whereas expression of caspase-3 mRNA and protein increased with age. Immunohistochemical staining revealed that CD3-positive thymocytes were located within both the thymic cortex and medulla, S100 β–positive thymic dendritic cells were located in the corticomedullary junction and medulla, and caspase-3–positive thymocytes were diffusely scattered throughout the cortex and medulla.

CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that age-related thymic changes in yaks that live on highland plateaus were similar to those observed in humans and other mammals. Thus, yaks might serve as a model to study thymic immune system adaptations to high elevations.

Full access
in American Journal of Veterinary Research