Search Results

You are looking at 1 - 6 of 6 items for

  • Author or Editor: Philip F. Solter x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To clone segments of the canine liver alkaline phosphatase (LALP) and corticosteroidinduced alkaline phosphatase (CIALP) genes and use those clones to determine the tissue source of CIALP, the kinetics of LALP and CIALP mRNA expression for glucocorticoid-treated dogs, and the correlation between LALP and CIALP transcript concentrations and isoenzyme activities.

Sample Population—Tissues obtained from 7 dogs treated with prednisone (1 mg/kg, SC, q 24 h) for up to 32 days and 1 untreated (control) dog.

Procedure—Gene segments of LALP and CIALP were obtained by reverse transcription-polymerase chain reaction (RT-PCR) assay. The tissue source of CIALP and IALP mRNA was determined by northern blot analysis of tissues from 1 of the glucocorticoidtreated dogs. Hepatic tissues and serum samples were obtained from the 6 remaining glucocorticoidtreated dogs on days 0, 2, 5, 10, and 32 of prednisone treatment, and relative expression of LALP and CIALP mRNA was correlated with LALP and CIALP activity.

Results—A 2,246-base pair (bp) segment of canine LALP and a 1,338-bp segment of CIALP were cloned. Northern blot analysis revealed CIALP mRNA expression in hepatic tissues only after glucocorticoid treatment. Kinetics of LALP and CIALP mRNA expression in the liver of glucocorticoid-treated dogs paralleled liver and serum activities of LALP and CIALP.

Conclusions and Clinical Relevance—The liver is the most likely source for CIALP in dogs. Analysis of kinetics of serum and hepatic LALP and CIALP mRNA suggests that after glucocorticoid treatment, both are regulated by modification of mRNA transcript concentrations, possibly through differing mechanisms. (Am J Vet Res 2002;63:1089–1095)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the effect of glucocorticoids on the induction of alkaline phosphatase (ALP) isoenzymes in the liver, kidneys, and intestinal mucosa, 3 tissues that are principally responsible for ALP synthesis in dogs.

Sample Population—Tissues from the liver, kidneys, and intestinal mucosa of 6 dogs treated with 1 mg of prednisone/kg/d for 32 days and 6 untreated control dogs.

Procedure—Using canine-specific primers for the ALP isoenzymes, a reverse transcription-polymerase chain reaction assay was designed to measure liver ALP (LALP) and intestinal ALP (IALP) mRNA and heterogeneous nuclear RNA (hnRNA) expression in tissues from the liver and kidneys and intestinal mucosa of glucocorticoid-treated and control dogs. Tissue ALP isoenzyme activities were compared between the groups.

Results—The LALP activity and mRNA concentrations increased in tissues of the liver and kidneys in dogs treated with prednisone, whereas LALP hnRNA increased only in liver tissues. The IALP activity and mRNA expression increased in intestinal mucosa and liver tissues in prednisone-treated dogs. We did not detect an increase in IALP hnRNA expression in these tissues.

Conclusions and Clinical Relevance—Synthesis of ALP is increased in the liver, kidneys, and intestinal mucosa of dogs in response to prednisone treatment. This response appears to be regulated at the transcriptional level, but mechanisms may differ between LALP and IALP. (Am J Vet Res 2002;63:1083–1088)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To map canine mitochondrial proteins and identify qualitative and quantitative differences in heart mitochondrial protein expression between healthy dogs and dogs with naturally occurring and induced dilated cardiomyopathy (DCM).

Sample Population—Left ventricle samples were obtained from 7 healthy dogs, 7 Doberman Pinschers with naturally occurring DCM, and 7 dogs with induced DCM.

Procedures—Fresh and frozen mitochondrial fractions were isolated from the left ventricular free wall and analyzed by 2-dimensional electrophoresis. Protein spots that increased or decreased in density by ≥ 2-fold between groups were analyzed by matrixassisted laser desorption/ionization time-of-flight mass spectrometry or quadrupole selecting, quadrupole collision cell, time-of-flight mass spectrometry.

Results—Within narrow pH gradients of control canine heart mitochondrial samples, a total of 1,528 protein spots were revealed. Forty subunits of heart mitochondrial proteins that differ significantly from control tissues were altered in tissue specimens from dogs with naturally occurring and induced forms of DCM. The most affected heart mitochondrial proteins in both groups were those of oxidative phosphorylation (55%). Upregulation of manganese superoxide dismutase was suggestive of heart oxidative injury in tissue specimens from dogs with both forms of DCM. Evidence of apoptosis was associated with overexpression of the heart mitochondrial voltage-dependent anion channel-2 protein and endonuclease G in tissue specimens from dogs with induced DCM.

Conclusions and Clinical Relevance—Alterations of heart mitochondrial proteins related to oxidative phosphorylation dysfunction were more prevalent in tissue specimens from dogs with induced or naturally occurring DCM, compared with those of control dogs.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine reference ranges for results of hematologic analyses of healthy Belgian Tervuren, to compare results of hematologic analyses for healthy Belgian Tervuren with results for healthy dogs of other breeds, and to determine prevalence of physiologic leukopenia in Belgian Tervuren.

Design—Cohort study.

Animals—180 healthy Belgian Tervuren and 63 healthy dogs of other breeds.

Procedure—Blood samples were analyzed by use of an automated device. Reference ranges were calculated for Belgian Tervuren by use of standard methods.

Results—Total WBC counts of Belgian Tervuren ranged from 2.61 to 16.90 X 103/µl. Mean WBC count of Belgian Tervuren (mean ± SEM, 7.04 ± 0.16 X 103/µl) was significantly lower than mean count for control dogs. Significantly more Belgian Tervuren (65/180; 36%) than control dogs (2/63; 3%) had WBC counts < 6.00 X 103/µl. Percentage of Belgian Tervuren with WBC count < 6.00 X 103/µl was low for dogs ≤ 2 years old, increased sharply for dogs between 2 and 4 years old, and was approximately 65% for dogs > 4 years old. Neutrophil, lymphocyte, and monocyte counts were significantly lower, and RBC count, hematocrit, and eosinophil fraction were significantly higher in Belgian Tervuren than in control dogs.

Conclusions and Clinical Relevance—Results suggest that physiologic leukopenia, resulting from low numbers of neutrophils, lymphocytes, and monocytes, may be a typical finding in a large percentage of healthy Belgian Tervuren and is not of clinical importance in otherwise healthy dogs. Healthy Belgian Tervuren may also have RBC counts and hematocrits higher than expected for healthy dogs.( J Am Vet Med Assoc 2000;216:866–871)

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To identify qualitative and quantitative differences in cardiac mitochondrial protein expression in complexes I to V between healthy dogs and dogs with natural or induced dilated cardiomyopathy (DCM).

Sample Population—Left ventricle samples were obtained from 7 healthy dogs, 7 Doberman Pinschers with naturally occurring DCM, and 7 dogs with DCM induced by rapid right ventricular pacing.

Procedures—Fresh and frozen mitochondrial fractions were isolated from the left ventricular free wall and analyzed by 2-dimensional electrophoresis. Protein spots that increased or decreased in density by 2-fold or greater between groups were analyzed by matrixassisted laser desorption/ionization time-of-flight mass spectrometry or quadrupole selecting, quadrupole collision cell, time-of-flight mass spectrometry.

Results—A total of 22 altered mitochondrial proteins were identified in complexes I to V. Ten and 12 were found in complex I and complexes II to V, respectively. Five were mitochondrial encoded, and 17 were nuclear encoded. Most altered mitochondrial proteins in tissue specimens from dogs with naturally occurring DCM were associated with complexes I and V, whereas in tissue specimens from dogs subjected to rapid ventricular pacing, complexes I and IV were more affected. In the experimentally induced form of DCM, only nuclear-encoded subunits were changed in complex I. In both disease groups, the 22-kd subunit was downregulated.

Conclusions and Clinical Relevance—Natural and induced forms of DCM resulted in altered mitochondrial protein expression in complexes I to V. However, subcellular differences between the experimental and naturally occurring forms of DCM may exist.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the nucleotide and amino acid sequence of atrial natriuretic peptide (ANP) in cats and its typical regions of cardiac expression.

Animals—5 healthy adult mixed-breed cats.

Procedure—Total RNA was extracted from samples obtained from the left and right atrium, left and right ventricle, and interventricular septum of each cat. The RNA was used to produce cDNA for sequencing and northern blot analysis. Genomic DNA was extracted from feline blood samples. Polymerase chain reaction primers designed from consensus sequences of other species were used to clone and sequence the feline ANP gene.

Results—The feline ANP gene consists of 1,072 nucleotides. It consists of 3 exons (123, 327, and 12 nucleotides) separated by 2 introns (101 and 509 nucleotides). It has several typical features of eukaryotic genes and a putative steroid-response element located within the second intron. Preprohormone ANP consists of 153 amino acids. The amino acid sequence of the active form of feline ANP (ANP-30) is identical to that of equine, bovine, and ovine ANP-30 and differs from that of human, canine, and porcine ANP-28 only by 2 carboxy-terminal arginine residues. The ANP mRNA was detected only in the left and right atria.

Conclusions and Clinical Relevance—The genetic and protein structure and principal regions of cardiac expression of feline ANP are similar to those of other species. Results of this study should be helpful in future studies on the natriuretic response in cats to diseases that affect cardiovascular function. (Am J Vet Res 2002;63:236–240)

Full access
in American Journal of Veterinary Research