Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Peter C. Strøm x
  • Refine by Access: All Content x
Clear All Modify Search
in Journal of the American Veterinary Medical Association
in Journal of the American Veterinary Medical Association


Objective—To develop a reliable method for converting cultured equine skin–derived fibroblasts into muscle cells.

Sample Population—Equine skin–derived fibroblasts.

Procedures—The equine myogenic differentiation 1 (eqMyoD) genomic sequence was obtained by use of equine bacterial artificial chromosome screening and PCR sequencing. Total mRNA was extracted from foal skeletal muscle, and eqMyoD cDNA was cloned into a plasmid vector with an internal ribosomal entry site to express bicistronic eqMyoD or enhanced green fluorescent protein (EGFP). Transient expression was confirmed by immunocytochemical analysis and western immunoblots in equine fibroblasts and fibroblasts from National Institutes of Health Swiss mouse embryos, prior to generation of a lentiviral vector containing the same coding sequences. Transformation of equine skin–derived cells into skeletal myotubes was examined by use of immunohistochemical analysis, western immunoblotting, and periodic acid–Schiff staining.

Results—eqMyoD mRNA consists of 960 bp and shares high homology with myogenic differentiation 1 from other mammals. Transfection confirmed the expression of a 53-kd protein with mainly nuclear localization. Lentiviral transduction was efficient, with approximately 80% of EGFP-positive cells transformed into multinucleated myotubes during 15 days, as determined by expression of the muscle-specific proteins desmin, troponin-T, and sarcomeric myosin and by cytoplasmic storage of glycogen.

Conclusions and Clinical Relevance—Equine primary fibroblasts were transformed by lentiviral transduction of eqMyoD into fusion-competent myoblasts. This may offer a preferable alternative to primary myoblast cultures for the investigation of cellular defects associated with muscle diseases of horses, such as recurrent exertional rhabdomyolysis and polysaccharide storage myopathy.

Full access
in American Journal of Veterinary Research


OBJECTIVE To describe the radiographic outcome of root canal treatment (RCT) of canine teeth of cats.

DESIGN Retrospective case series.

ANIMALS 32 cats with 37 canine teeth with complicated crown fractures that underwent RCT.

PROCEDURES Medical record databases of 5 referral veterinary hospitals were searched to identify cats that underwent RCT between 1998 and 2016. Only cats that had at least 1 follow-up examination during which radiographs were obtained of the treated canine tooth or teeth were included in the study. Dental radiographs obtained before and immediately after RCT and during all follow-up examinations were reviewed. Treatment was considered successful if the periodontal ligament space was within reference limits and preoperative external inflammatory root resorption (EIRR), if present, had stabilized. Treatment was considered to have no evidence of failure if preoperative EIRR had stabilized and preexisting periapical lucency was stable or decreased in size but had not resolved. Treatment was considered to have failed if periapical lucency or EIRR developed subsequent to RCT or preexisting periapical lucency increased in size or preoperative EIRR progressed following RCT.

RESULTS Follow-up time after RCT ranged from 3 to 72 months. The RCT was successful for 18 (49%) of the 37 treated teeth, had no evidence of failure for 12 (32%), and failed for 7 (19%). Preexisting EIRR and patient age ≥ 5 years significantly increased the rate of RCT failure.

CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that RCT was a viable treatment option to salvage endodontically diseased canine teeth in cats.

Full access
in Journal of the American Veterinary Medical Association