Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Paula Martin-Vaquero x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To characterize and compare the MRI morphological features of the cervical vertebral column of Great Danes with and without clinical signs of cervical spondylomyelopathy (CSM).

Design—Prospective cohort study.

Animals—30 Great Danes (15 clinically normal and 15 CSM-affected).

Procedures—All dogs underwent MRI of the cervical vertebral column (C2–3 through T1–2). Features evaluated included sites of subarachnoid space compression, spinal cord compression, or both; degree, cause, and direction of compression; MRI signal changes of the spinal cord; articular process (facet) joint characteristics; internal vertebral venous plexus visibility; and presence of extradural synovial cysts as well as presence and degree of intervertebral disk degeneration and foraminal stenosis.

Results—Clinically normal and CSM-affected dogs had 11 and 61 compressive sites, respectively, detected with MRI. All CSM-affected dogs had ≥ 1 site of spinal cord compression. No signal changes were observed in spinal cords of normal dogs, whereas 14 sites of hyperintensity were found in 9 CSM-affected dogs. Foraminal stenosis was present in 11 clinically normal and all CSM-affected dogs. The number of stenotic foraminal sites was significantly greater in the CSM-affected group, and severe stenosis appeared to be more common in this group than in the clinically normal group. Significant differences were identified between clinically normal and CSM-affected dogs with regard to amount of synovial fluid evident, regularity of articular surfaces, degree of articular process joint proliferation, and internal vertebral venous plexus visibility.

Conclusions and Clinical Relevance—Abnormalities were detected with MRI in several clinically normal Great Danes. Severe spinal cord compression, number of stenotic foraminal sites, and signal changes within the spinal cord distinguished CSM-affected from clinically normal Great Danes.

Restricted access
in Journal of the American Veterinary Medical Association


Objective—To evaluate the ability of 2-D time-of-flight (ToF) magnetic resonance angiography (MRA) to depict intracranial vasculature and compare results obtained with 3.0- and 7.0-T scanners in dogs.

Animals—5 healthy Beagles.

Procedures—2-D ToF-MRA of the intracranial vasculature was obtained for each dog by use of a 3.0-T and a 7.0-T scanner. Quantitative assessment of the images was obtained by documentation of the visibility of major arteries comprising the cerebral arterial circle and their branches and recording the number of vessels visualized in the dorsal third of the brain. Qualitative assessment was established by evaluation of overall image quality and image artifacts.

Results—Use of 3.0- and 7.0-T scanners allowed visualization of the larger vessels of the cerebral arterial circle. Use of a 7.0-T scanner was superior to use of a 3.0-T scanner in depiction of the first- and second-order arterial branches. Maximum-intensity projection images had a larger number of vessels when obtained by use of a 7.0-T scanner than with a 3.0-T scanner. Overall, image quality and artifacts were similar with both scanners.

Conclusions and Clinical Relevance—Visualization of the major intracranial arteries was comparable with 3.0- and 7.0-T scanners; the 7.0-T scanner was superior for visualizing smaller vessels. Results indicated that ToF-MRA is an easily performed imaging technique that can be included as part of a standard magnetic resonance imaging examination and should be included in the imaging protocol of dogs suspected of having cerebrovascular disease.

Full access
in American Journal of Veterinary Research