Search Results
You are looking at 1 - 1 of 1 items for
- Author or Editor: Patricia J. Fisher x
- Refine by Access: All Content x
Abstract
Objective—To determine whether a mutation in the fibrillin 2 gene (FBN2) is associated with canine hip dysplasia (CHD) and osteoarthritis in dogs.
Animals—-1,551 dogs.
Procedures—Hip conformation was measured radiographically. The FBN2 was sequenced from genomic DNA of 21 Labrador Retrievers and 2 Greyhounds, and a haplotype in intron 30 of FBN2 was sequenced in 90 additional Labrador Retrievers and 143 dogs of 6 other breeds. Steady-state values of FBN2 mRNA and control genes were measured in hip joint tissues of fourteen 8-month-old Labrador Retriever–Greyhound crossbreeds.
Results—The Labrador Retrievers homozygous for a 10-bp deletion haplotype in intron 30 of FBN2 had significantly worse CHD as measured via higher distraction index and extended-hip joint radiograph score and a lower Norberg angle and dorsolateral subluxation score. Among 143 dogs of 6 other breeds, those homozygous for the same deletion haplotype also had significantly worse radiographic CHD. Among the 14 crossbred dogs, as the dorsolateral subluxation score decreased, the capsular FBN2 mRNA increased significantly. Those dogs with incipient hip joint osteoarthritis had significantly increased capsular FBN2 mRNA, compared with those dogs without osteoarthritis. Dogs homozygous for the FBN2 deletion haplotype had significantly less FBN2 mRNA in their femoral head articular cartilage.
Conclusions and Clinical Relevance—The FBN2 deletion haplotype was associated with CHD. Capsular gene expression of FBN2 was confounded by incipient secondary osteoarthritis in dysplastic hip joints. Genes influencing complex traits in dogs can be identified by genome-wide screening, fine mapping, and candidate gene screening.