Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: Orhan Sahin x
- Refine by Access: All Content x
Abstract
Objective—To compare pathogenicity of an emergent abortifacient Campylobacter jejuni (IA 3902) with that of reference strains after oral inoculation in pregnant guinea pigs.
Animals—58 pregnant guinea pigs.
Procedures—12 animals were challenged IP with C jejuni IA 3902 along with 5 sham-inoculated control animals to confirm abortifacient potential. Once pathogenicity was confirmed, challenge via oral inoculation was performed whereby 12 guinea pigs received IA 3902, 12 received C jejuni isolated from ovine feces (OF48), 12 received a fully sequenced human C jejuni isolate (NCTC 11168), and 5 were sham-inoculated control animals. After abortions, guinea pigs were euthanized; samples were collected for microbial culture, histologic examination, and immunohistochemical analysis.
Results—C jejuni IA 3902 induced abortion in all 12 animals following IP inoculation and 6 of 10 animals challenged orally. All 3 isolates colonized the intestines after oral inoculation, but only IA 3902 induced abortion. Evidence of infection existed for both IA 3902 and NCTC 11168; however, C jejuni was only recovered from fetoplacental units of animals inoculated with IA 3902. Immunohistochemical analysis localized C jejuni IA 3902 infection to subplacental trophoblasts, perivascular tissues, and phagocytes in the placental transitional zone.
Conclusions and Clinical Relevance—This study revealed that C jejuni IA 3902 was a unique, highly abortifacient strain with the ability to colonize the intestines, induce systemic infection, and cause abortion because of its affinity for the fetoplacental unit. Guinea pigs could be effectively used in the study of septic abortion after oral inoculation with this Campylobacter strain.
Abstract
Objective—To compare efficacy of 2 commercial ovine Campylobacter vaccines and an experimental bacterin in guinea pigs following IP inoculation with Campylobacter jejuni IA3902.
Animals—51 female guinea pigs.
Procedures—Pregnant and nonpregnant animals were randomly assigned to 1 of 4 treatment groups and administered a commercial Campylobacter vaccine labeled for prevention of campylobacteriosis in sheep via two 5-mL doses 14 days apart (vaccine A; n = 13), another labeled for prevention of campylobacteriosis via two 2-mL doses (vaccine B; 12), an experimental bacterin prepared from the challenge strain (12), or a sham vaccine (14). Ten days later, animals were challenged IP with C jejuni IA3902; 48 hours later, animals were euthanized, complete necropsy was performed, and blood and tissue samples were obtained for bacteriologic culture.
Results—Administration of vaccine B or the experimental bacterin, but not vaccine A, significantly reduced 48-hour infection rates versus administration of the sham vaccine. A significantly reduced 48-hour infection rate was associated with administration of vaccine B independent of pregnancy status.
Conclusions and Clinical Relevance—Administration of vaccine B significantly reduced infection in guinea pigs challenged with C jejuni IA3902, similar to a homologous bacterin. Results suggested that vaccine B or an autogenous product may be effective in controlling ovine campylobacteriosis caused by this emergent abortifacient strain. Bacteriologic culture of blood, liver, bile, and uterus in nonpregnant guinea pigs 48 hours after inoculation may be a useful screening tool for comparing efficacy of C jejuni vaccines.
Abstract
OBJECTIVE
To evaluate the efficacy of tulathromycin for prevention of abortion in pregnant ewes when administered within 24 hours after experimental inoculation with Campylobacter jejuni.
ANIMALS
20 pregnant ewes between 72 and 92 days of gestation.
PROCEDURES
All ewes were inoculated with a field strain of C jejuni (8.5 × 108 to 10.6 × 108 CFUs, IV). Eighteen hours later, ewes received either tulathromycin (1.1 mL/45 kg [2.4 mg/kg], SC; n = 10) or sterile saline (0.9% NaCl) solution (1.1 mL/45 kg, SC; sham; 10). Ewes were euthanized immediately after observation of vaginal bleeding, abortion, or completion of a 21-day observation period. Necropsy was performed on all ewes, and tissue specimens were obtained for bacterial culture and histologic examination.
RESULTS
1 sham-treated ewe and 1 tulathromycin-treated ewe developed signs of severe endotoxemia and were euthanized within 24 hours after C jejuni inoculation. Seven sham-treated and 2 tulathromycin-treated ewes developed vaginal bleeding or aborted and were euthanized between 4 and 21 days after C jejuni inoculation. The proportion of tulathromycin-treated ewes that developed vaginal bleeding or aborted during the 21 days after C jejuni inoculation (2/9) was significantly less than that for the sham-treated ewes (7/9).
CONCLUSIONS AND CLINICAL RELEVANCE
Results suggested that administration of tulathromycin to pregnant ewes following exposure to C jejuni was effective in decreasing the number of C jejuni–induced abortions. Because of concerns regarding the development of macrolide resistance among Campylobacter strains, prophylactic use of tulathromycin in sheep is not recommended.
Abstract
OBJECTIVE To compare the pharmacokinetics of 2 commercial florfenicol formulations following IM and SC administration to sheep.
ANIMALS 16 healthy adult mixed-breed sheep.
PROCEDURES In a crossover study, sheep were randomly assigned to receive florfenicol formulation A or B at a single dose of 20 mg/kg, IM, or 40 mg/kg, SC. After a 2-week washout period, each sheep was administered the opposite formulation at the same dose and administration route as the initial formulation. Blood samples were collected immediately before and at predetermined times for 24 hours after each florfenicol administration. Plasma florfenicol concentrations were determined by high-performance liquid chromatography. Pharmacokinetic parameters were estimated by noncompartmental methods and compared between the 2 formulations at each dose and route of administration.
RESULTS Median maximum plasma concentration, elimination half-life, and area under the concentration-time curve from time 0 to the last quantifiable measurement for florfenicol were 3.76 μg/mL, 13.44 hours, and 24.88 μg•h/mL, respectively, for formulation A and 7.72 μg/mL, 5.98 hours, and 41.53 μg•h/mL, respectively, for formulation B following administration of 20 mg of florfenicol/kg, IM, and 2.63 μg/mL, 12.48 hours, and 31.63 μg•h/mL, respectively, for formulation A and 4.70 μg/mL, 16.60 hours, and 48.32 μg•h/mL, respectively, for formulation B following administration of 40 mg of florfenicol/kg, SC.
CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that both formulations achieved plasma florfenicol concentrations expected to be therapeutic for respiratory tract disease caused by Mannheimia haemolytica or Pasteurella spp at both doses and administration routes evaluated.