Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Narelle C. Stubbs x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine whether body lean angle could be predicted from circle radius and speed in horses during lunging and whether an increase in that angle would decrease the degree of movement symmetry (MS).

Animals—11 medium- to high-level dressage horses in competition training.

Procedures—Body lean angle, head MS, and trunk MS were quantified during trotting while horses were instrumented with a 5-sensor global positioning system–enhanced inertial sensor system and lunged on a soft surface. Speed and circle radius were varied and used to calculate predicted body lean angle. Agreement between observed and predicted values was assessed, and the association between lean angle and MS was determined via least squares linear regression.

Results—162 trials totaling 3,368 strides (mean, 21 strides/trial) representing trotting speeds of 1.5 to 4.7 m/s and circle radii of 1.8 to 11.2 m were conducted in both lunging directions. Differences between observed and predicted lean angles were small (mean ± SD difference, −1.2 ± 2.4°) but significantly greater for circling to the right versus left. Movement symmetry values had a larger spread for the head than for the pelvis, and values of all but 1 MS variable changed with body lean angle.

Conclusions and Clinical Relevance—Body lean angle agreed well with predictions from gravitational and centripetal forces, but differences observed between lunging directions emphasize the need to investigate other factors that might influence this variable. For a fair comparison of MS between directions, body lean angle needs to be controlled for or corrected with the regression equations. Whether the regression equations need to be adapted for lame horses requires additional investigation.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To compare effects of 4 types of stimulation devices attached to the hind feet on hoof flight, joint angles, and net joint powers of trotting horses.

Animals—8 clinically normal horses.

Procedures—Horses were evaluated under 5 conditions in random order: no stimulators, loose straps (10 g), lightweight tactile stimulators (55 g), limb weights (700 g), and limb weights with tactile stimulators (700 g). Reflective markers on the hind limbs were tracked during the swing phase of 6 trotting trials performed at consistent speed to determine peak hoof heights and flexion angles of the hip, stifle, tarsal, and metatarsophalangeal joints. Inverse dynamic analysis was used to calculate net joint energies. Comparisons among stimulators were made.

Results—Peak hoof height was lowest for no stimulators (mean ± SD, 5.42 ± 1.38 cm) and loose straps (6.72 ± 2.19 cm), intermediate for tactile stimulators (14.13 ± 7.33 cm) and limb weights (16.86 ± 15.93 cm), and highest for limb weights plus tactile stimulators (24.35 ± 13.06 cm). Compared with no stimulators, net tarsal energy generation increased for tactile stimulators, limb weights, and limb weights plus tactile stimulators, but only the weighted conditions increased net energy generation across the hip joint.

Conclusions and Clinical Relevance—The type and weight of foot stimulators affected the magnitude of the kinematic and kinetic responses and the joints affected. These findings suggest that different types of foot stimulators are appropriate for rehabilitation of specific hind limb gait deficits, such as toe dragging and a short stride.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To identify differences in intersegmental bending angles in the cervical, thoracic, and lumbar portions of the vertebral column between the end positions during performance of 3 dynamic mobilization exercises in cervical lateral bending in horses.

Animals—8 nonlame horses.

Procedures—Skin-fixed markers on the head, cervical transverse processes (C1–C6) and spinous processes (T6, T8, T10, T16, L2, L6, S2, and S4) were tracked with a motion analysis system with the horses standing in a neutral position and in 3 lateral bending positions to the left and right sides during chin-to-girth, chin-to-hip, and chin-to-tarsus mobilization exercises. Intersegmental angles for the end positions in the various exercises performed to the left and right sides were compared.

Results—The largest changes in intersegmental angles were at C6, especially for the chin-to-hip and chin-to-tarsus mobilization exercises. These exercises were also associated with greater lateral bending from T6 to S2, compared with the chin-to-girth mobilization or neutral standing position. The angle at C1 revealed considerable bending in the chin-to-girth position but not in the 2 more caudal positions.

Conclusions and Clinical Relevance—The amount of bending in different parts of the cervical vertebral column differed among the dynamic mobilization exercises. As the horse's chin moved further caudally, bending in the caudal cervical and thoracolumbar regions increased, suggesting that the more caudal positions may be particularly effective for activating and strengthening the core musculature that is used to bend and stabilize the horse's back.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the gross morphology of the multifidus, longus colli, and longus thoracis muscles in the cervical and cranial thoracic portions of the equine vertebral column.

Sample—15 horse cadavers.

Procedures—The vertebral column was removed intact from the first cervical vertebra (C1) to the seventh thoracic vertebra (T7). After removing the superficial musculature, detailed anatomic dissections of the multifidus, longus colli, and longus thoracis muscles were performed.

Results—The multifidus cervicis muscle consisted of 5 bundles/level arranged in lateral, medial, and deep layers from C2 caudally into the thoracic portion of the vertebral column. Fibers in each bundle attached cranially to a spinous process then diverged laterally, attaching caudally on the dorsolateral edge of the vertebral lamina and blending into the joint capsule of an articular process articulation after crossing 1 to 4 intervertebral joints. The longus colli muscle had ventral, medial, and deep layers with 5 bundles/level from C1 to C5 that attached cranially to the ventral surface of the vertebral body, diverged laterally and crossed 1 to 4 intervertebral joints, then attached onto a vertebral transverse process as far caudally as C6. The longus thoracis muscle consisted of a single, well-defined muscle belly from C6 to T5-T6, with intermediate muscular attachments onto the ventral aspects of the vertebral bodies, the intervertebral symphyses, and the craniomedial aspects of the costovertebral joint capsules.

Conclusions and Clinical Relevance—Results indicated that there were multiple, short bundles of the multifidus cervicis, multifidus thoracis, and longus colli muscles; this was consistent with a function of providing sagittal plane intersegmental vertebral column stability.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the magnitude and location of skin movement attributable to the cutaneus trunci muscle reflex in response to localized stimulation of the skin of the dorsolateral aspect of the thoracic wall in horses.

Animals—8 horses.

Procedures—A grid of 56 reflective markers was applied to the lateral aspect of the body wall of each horse; markers were placed at 10-cm intervals in 7 rows and 8 columns. A motion analysis system with 10 infrared cameras was used to track movements of the markers in response to tactile stimulation of the dorsolateral aspect of the thoracic wall at the levels of T6, T11, and T16. Marker movement data determined after skin stimulation were used to create a skin deformation gradient tensor field, which was analyzed with custom software.

Results—The sites of maximal skin deformation were located close to the stimulation sites; the centers of the twitch responses were located a mean distance of 7.7 to 12.8 cm ventral and between 6.6 cm cranial and 3.1 cm caudal to the stimulation sites.

Conclusions and Clinical Relevance—Findings of this study may have implications for assessment of nerve conduction velocities of the cutaneus trunci muscle reflex and may enhance understanding of the responses of horses to placement of tack or other equipment on skin over the cutaneus trunci muscles.

Full access
in American Journal of Veterinary Research