Search Results

You are looking at 1 - 1 of 1 items for

  • Author or Editor: Mohammad H. Hosni x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To determine the relationship between ambient temperature and mean body surface temperature (MBST) measured by use of infrared thermography (IRT) and to evaluate the ability of IRT to detect febrile responses in pigs following inoculation with Actinobacillus pleuropneumoniae.

Animals—28 crossbred barrows.

Procedures—Pigs (n = 4) were subjected to ambient temperatures ranging from 10 to 32 C in an environmental chamber. Infrared thermographs were obtained, and regression analysis was used to determine the relationship between ambient temperature and MBST. The remaining pigs were assigned to groups in an unbalanced randomized complete block design (6 A pleuropneumoniae-inoculated febrile pigs [increase in rectal temperature ≥ 1.67 C], 6 A pleuropneumoniae-inoculated nonfebrile pigs [increase in rectal temperature < 1.67 C], and 12 noninoculated pigs). Infrared thermographs and rectal temperatures were obtained for the period from 2 hours before to 18 hours after inoculation, and results were analyzed by use of repeated-measures ANOVA.

Results—A significant linear relationship was observed between ambient temperature and MBST (slope, 0.40 C). For inoculated febrile pigs, a treatment X method interaction was evident for rectal temperature and MBST, whereas inoculated nonfebrile pigs only had increased rectal temperatures, compared with noninoculated pigs. A method X time interaction resulted from the longer interval after inoculation until detection of an increase in MBST by use of IRT.

Conclusions and Clinical Relevance—Infrared thermography can be adjusted to account for ambient temperature and used to detect changes in MBST and radiant heat production attributable to a febrile response in pigs. (Am J Vet Res 2001;62:676–681)

Full access
in American Journal of Veterinary Research