Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: Mitchell V. Palmer x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To investigate the infection of calves with Mycobacterium bovis through oral exposure and transmission of M bovis from experimentally infected white-tailed deer to uninfected cattle through indirect contact.

Animals—24 11-month-old, white-tailed deer and 28 6-month-old, crossbred calves.

Procedure—In the oral exposure experiment, doses of 4.3 × 106 CFUs (high dose) or 5 × 103 CFUs (low dose) of M bovis were each administered orally to 4 calves; as positive controls, 2 calves received M bovis (1.7 × 105 CFUs) via tonsillar instillation. Calves were euthanatized and examined 133 days after exposure. Deer-to-cattle transmission was assessed in 2 phases (involving 9 uninfected calves and 12 deer each); deer were inoculated with 4 × 105 CFUs (phase I) or 7 × 105 CFUs (phase II) of M Bovis. Calves and deer exchanged pens (phase I; 90 days' duration) or calves received uneaten feed from deer pens (phase II; 140 days' duration) daily. At completion, animals were euthanatized and tissues were collected for bacteriologic culture and histologic examination.

Results—In the low- and high-dose groups, 3 of 4 calves and 1 of 4 calves developed tuberculosis, respectively. In phases I and II, 9 of 9 calves and 4 of 9 calves developed tuberculosis, respectively.

Conclusions and Clinical Relevance—Results indicated that experimentally infected deer can transmit M bovis to cattle through sharing of feed. In areas where tuberculosis is endemic in free-ranging white-tailed deer, management practices to prevent access of wildlife to feed intended for livestock should be implemented. (Am J Vet Res 2004;65:1483–1489)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To examine effects of co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and Bordetella bronchiseptica in pigs.

Animals—Forty 3-week-old pigs.

Procedure—30 pigs (10 pigs/group) were inoculated with PRRSV, B bronchiseptica, or both. Ten noninoculated pigs were control animals.

Results—Clinical signs, febrile response, and decreased weight gain were most severe in the group inoculated with both organisms. The PRRSV was isolated from all pigs in both groups inoculated with virus. All pigs in both groups that received PRRSV had gross and microscopic lesions consistent with interstitial pneumonia. Bordetella bronchiseptica was cultured from all pigs in both groups inoculated with that bacterium. Colonization of anatomic sites by B bronchiseptica was comparable between both groups. Pigs in the group that received only B bronchiseptica lacked gross or microscopic lung lesions, and B bronchiseptica was not isolated from lung tissue. In the group inoculated with B bronchiseptica and PRRSV, 3 of 5 pigs 10 days after inoculation and 5 of 5 pigs 21 days after inoculation had gross and microscopic lesions consistent with bacterial bronchopneumonia, and B bronchiseptica was isolated from the lungs of 7 of those 10 pigs.

Conclusions and Clinical Relevance—Clinical disease was exacerbated in co-infected pigs, including an increased febrile response, decreased weight gain, and B bronchiseptica-induced pneumonia. Bordetella bronchiseptica and PRRSV may circulate in a herd and cause subclinical infections. Therefore, co-infection with these organisms may cause clinical respiratory tract disease and leave pigs more susceptible to subsequent infection with opportunistic bacteria. (Am J Vet Res 2000;61:892–899)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether Mycobacterium bovis can be transmitted from experimentally infected deer to uninfected in-contact deer.

Animals—Twenty-three 6-month-old white-tailed deer.

Procedure—On day 0, M bovis (2 × 108 colony-forming units) was administered by intratonsillar instillation to 8 deer; 3 control deer received saline (0.9% NaCl) solution. Eight in-contact deer were comingled with inoculated deer from day 21. On day 120, inoculated deer were euthanatized and necropsied. On day 180, 4 in-contact deer were euthanatized, and 4 new incontact deer were introduced. On day 360, all in-contact deer were euthanatized. Rectal, oral, and nasal swab specimens and samples of hay, pelleted feed, water, and feces were collected for bacteriologic culture. Tissue specimens were also collected at necropsy for bacteriologic culture and histologic analysis.

Results—On day 90, inoculated and in-contact deer developed delayed-type hypersensitivity (DTH) reactions to purified protein derivative of M bovis. Similarly, new in-contact deer developed DTH reactions by 100 days of contact with original in-contact deer. Tuberculous lesions in in-contact deer were most commonly detected in lungs and tracheobronchial and medial retropharyngeal lymph nodes. Mycobacterium bovis was isolated from nasal secretions and saliva from inoculated and in-contact deer, urine and feces from in-contact deer, and hay and pelleted feed.

Conclusions and Clinical RelevanceMycobacterium bovis is efficiently transmitted from experimentally infected deer to uninfected in-contact deer through nasal secretions, saliva, or contaminated feed. Wildlife management practices that result in unnatural gatherings of deer may enhance both direct and indirect transmission of M bovis. (Am J Vet Res 2001;62:692–696)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine effects of intranasal inoculation with porcine reproductive and respiratory syndrome virus (PRRSV) or Bordetella bronchiseptica on challenge with nontoxigenic Pasteurella multocida in pigs.

Animals—Seventy 3-week-old pigs.

Procedure—In experiment 1, pigs were not inoculated (n= 10) or were inoculated with PRRSV (10), P multocida (10), or PRRSV followed by challenge with P multocida (10). In experiment 2, pigs were not inoculated (n = 10) or were inoculated with B bronchiseptica (10) or PRRSV and B bronchiseptica (10); all pigs were challenged with P multocida. Five pigs from each group were necropsied 14 and 21 days after initial inoculations.

ResultsPasteurella multocida was not isolated from tissue specimens of pigs challenged with P multocida alone or after inoculation with PRRSV. However, in pigs challenged after inoculation with B bronchiseptica, P multocida was isolated from specimens of the nasal cavity and tonsil of the soft palate. Number of bacteria isolated increased in pigs challenged after coinoculation with PRRSV and B bronchiseptica, and all 3 agents were isolated from pneumonic lesions in these pigs.

Conclusion and Clinical Relevance—Infection of pigs with B bronchiseptica but not PRRSV prior to challenge with P multocida resulted in colonization of the upper respiratory tract and tonsil of the soft palate with P multocida. Coinfection with PRRSV and B bronchiseptica predisposed pigs to infection of the upper respiratory tract and lung with P multocida. Porcine reproductive and respiratory syndrome virus and B bronchiseptica may interact to adversely affect respiratory tract defense mechanisms, leaving pigs especially vulnerable to infection with secondary agents such as P multocida. (Am J Vet Res 2001; 62:521–525)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To inoculate white-tailed deer (Odocoileus virginianus) during the sixth or seventh week of gestation with bovine viral diarrhea virus (BVDV) and observe for signs of reproductive tract disease during a 182-day period.

Animals—10 pregnant white-tailed deer (8 seronegative and 2 seropositive [control deer] for BVDV).

Procedures—Deer were inoculated with 1 of 2 deer-derived BVDV strains (RO3-20663 or RO3-24272). Serum anti-BVDV antibody titers were determined prior to and 21 or 35 days after inoculation. Virus isolation (VI) procedures were performed on tissues from fetuses and does that died and on blood samples collected from live fawns. Ear notch specimens obtained from live fawns were assessed by use of BVDV antigen-capture ELISA (ACE).

Results—Both RO3-20663–inoculated seropositive deer gave birth to apparently normal fawns. Among the RO3-24272–inoculated seronegative deer, 1 died, and 1 aborted and 1 resorbed their fetuses; among the RO3-20663–inoculated seronegative deer, 3 died, 1 aborted its fetus, and 1 gave birth to 2 fawns that were likely persistently infected. On the basis of VI and ACE results, those 2 fawns were positive for BVDV; both had no detectable neutralizing anti-BVDV antibodies in serum.

Conclusions and Clinical Relevance—Reproductive tract disease that developed in pregnant white-tailed deer following BVDV inoculation was similar to that which develops in BVDV-exposed cattle. Methods developed for BVDV detection in cattle (VI, immunohistochemical evaluations, and ACE) can be applied in assessments of white-tailed deer. Fawns from does that had serum anti-BVDV antibodies prior to inoculation were protected against BVDV infection in utero.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To develop a noninvasive biomarker-based detection system specific for Mycobacterium bovis for monitoring infection in wild animals.

SAMPLE Serum samples from 8 experimentally infected yearling white-tailed deer (Odocoileus virginianus) and 3 age-matched control deer and from 393 Minnesota Department of Natural Resources hunter-harvested white-tailed deer in northwest Minnesota.

PROCEDURES 8 yearling deer were inoculated with 2 × 108 CFUs of virulent M bovis strain 1315 (day 0), and sera were obtained on days 0, 19, 48, and 60; sera were obtained from 3 uninoculated control deer on those same days. Sera from these deer and 9 M bovis-positive hunter-harvested deer were tested for 3 Mycobacterium-specific biomarkers (MB1895c, MB2515c, and polyketide synthase 5) by use of an indirect ELISA. That same ELISA was used to test sera obtained from 384 exposed noninfected deer in northwest Minnesota from 2007 through 2010, concurrent with an outbreak of tuberculosis involving cattle and deer in that region.

RESULTS ELISA results revealed that tuberculosis infection could be detected as early as 48 days after inoculation in experimentally infected deer. Results for 384 deer sera revealed that prevalence of tuberculosis decreased over the 4-year period.

CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that the prevalence of tuberculosis in Minnesota deer decreased after 2009 but tuberculosis may have persisted (as subclinical disease) at extremely low levels, as indicated by the presence of low concentrations of circulating biomarkers. Biomarker-based diagnostic tests may offer a specific approach for early identification of M bovis infection.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine prevalence of tuberculosis caused by infection with Mycobacterium bovis in cervids on privately owned ranches in northeastern lower Michigan.

Design—Epidemiologic survey.

Animals—Cervids on 96 privately owned ranches.

Procedures—A combination of slaughter and skin tuberculin testing was used to collect data. Infection with M bovis was confirmed by use of standard necropsy and bacteriologic culture techniques.

Results—Cervids with tuberculosis were detected on 1 of the 96 ranches. The apparent prevalence of tuberculosis in cervids from the 96 ranches was 1.1 cases/100 cervids (21 cases/1,867 cervids tested). For the ranch with infected cervids, prevalence of infection with M bovis was 12.1 cases/100 cervids (21 cases/174 cervids tested). No obvious gross lesions were seen in 8 of 21 white-tailed deer and 1 coyote with culture-confirmed M bovis infection.

Conclusions and Clinical Relevance—The lack of visible lesions in a substantial proportion of infected animals should be taken into consideration in studies involving detection and prevalence of tuberculosis. (J Am Vet Med Assoc 2002;220:656–659)

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine the distribution of lesions and extent of tissues infected with Mycobacterium bovis in a captive population of white-tailed deer.

Design—Cross-sectional study.

Animals—116 captive white-tailed deer.

Procedure—Deer were euthanatized, and postmortem examinations were performed. Tissues with gross lesions suggestive of tuberculosis were collected for microscopic analysis and bacteriologic culture. Tissues from the head, thorax, and abdomen of deer with no gross lesions were pooled for bacteriologic culture. Tonsillar, nasal, oral, and rectal swab specimens, fecal samples, and samples of hay and pelleted feed, soil around feeding sites, and water from 2 natural ponds were collected for bacteriologic culture.

ResultsMycobacterium bovis was isolated from 14 of 116 (12%) deer; however, only 9 of 14 had lesions consistent with tuberculosis. Most commonly affected tissues included the medial retropharyngeal lymph node and lung. Five of 14 tuberculous deer had no gross lesions; however, M bovis was isolated from pooled tissue specimens from the heads of each of these deer. Bacteriologic culture of tonsillar swab specimens from 2 of the infected deer yielded M bovis. Mean (± SEM) age of tuberculous deer was 2.5 ± 0.3 years (range, 0.5 to 6 years). Mycobacterium bovis was not isolated from feed, soil, water, or fecal samples.

Conclusions and Clinical Relevance—Examination of hunter-killed white-tailed deer for tuberculosis commonly includes only the lymph nodes of the head. Results of such examinations may underestimate disease prevalence by as much as 57%. Such discrepancy should be considered when estimating disease prevalence. (J Am Vet Med Assoc 2000;216:1921–1924)

Full access
in Journal of the American Veterinary Medical Association