Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Mirja K. Huhtinen x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To determine whether sublingual detomidine gel administration to horses would be effective in providing an appropriate degree of sedation and restraint to facilitate completion of veterinary and husbandry procedures under field conditions.

Design—Multicenter, prospective, randomized, blinded, placebo-controlled clinical study.

Animals—270 client-owned horses known to require sedation or strong restraint to enable veterinary and husbandry procedures to be performed.

Procedures—Horses randomly received a single dose of detomidine gel (0.04 mg/kg [0.018 mg/lb]) or placebo gel administered sublingually. Horses were sedated to facilitate cleaning the prepuce, cutting of hair with electric clippers, hoof trimming or application of shoes, manual dental floating (ie, rasping or filing of the teeth to remove irregularities), nasogastric passage of a stomach tube or endoscope, and radiography. The primary determinant of efficacy was an assessment by a veterinarian on the ability or inability to successfully conduct the procedure.

Results—171 horses met all the study protocol criteria. One hundred twenty-nine horses were treated with detomidine. The procedure was completed successfully for 76% (98/129) of the detomidine-treated horses, while the procedure was completed successfully for only 7% (3/42) of the placebo-treated horses. The percentage of horses in which the procedure was successfully completed was significantly different between detomidine-treated horses and placebo-treated horses. No serious adverse effects were reported.

Conclusions and Clinical Relevance—Detomidine gel administered to horses sublingually at a dose of 0.04 mg/kg provided an appropriate degree of sedation and restraint to facilitate completion of veterinary and husbandry procedures in horses known to require sedation for such procedures.

Full access
in Journal of the American Veterinary Medical Association


Objective—To determine whether inhaled nitric oxide (NO) prevents pulmonary hypertension and improves oxygenation after IV administration of a bolus of dexmedetomidine in anesthetized sheep.

Animals—6 healthy adult sheep.

Procedure—In a crossover study, sevoflurane-anesthetized sheep received dexmedetomidine (2 µg/kg, IV) without NO (DEX treatment) or with inhaled NO (DEX-NO treatment). Cardiopulmonary variables, including respiratory mechanics, were measured before and for 120 minutes after bolus injection of dexmedetomidine.

Results—Dexmedetomidine induced a transient decrease in heart rate and cardiac output. A short-lived increase in mean arterial pressure (MAP) and systemic vascular resistance (SVR) was followed by a significant decrease in MAP and SVR for 90 minutes. Mean pulmonary arterial pressure (MPAP) and pulmonary vascular resistance increased transiently after dexmedetomidine injection. The PaO2 was significantly decreased 3 minutes after injection and reached a minimum of (mean ± SEM) 13.3 ± 7.8 kPa 10 minutes after injection. The decrease in PaO2 was accompanied by a sudden and prolonged decrease in dynamic compliance and a significant increase in airway resistance, shunt fraction, and alveolar dead space. Peak changes in MPAP did not differ between the 2 treatments. For the DEX-NO treatment, PaO2 was significantly lower and the shunt fraction significantly higher than for the DEX treatment.

Conclusions and Clinical Relevance—Inhalation of NO did not prevent increases in pulmonary arterial pressures induced by IV administration of dexmedetomidine. Preemptive inhalation of NO intensified oxygenation impairment, probably through increases in intrapulmonary shunting. (Am J Vet Res 2005;66:1496–1502)

Full access
in American Journal of Veterinary Research