Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Miori Kishimoto x
  • Refine by Access: All Content x
Clear All Modify Search


OBJECTIVE To measure cerebral blood flow (CBF) and cerebral blood volume (CBV) by means of perfusion CT in clinically normal Holstein calves.

ANIMALS 9 Holstein calves.

PROCEDURES Each of the 9 calves (mean age, 20.2 days) was anesthetized and received an injection of iodinated contrast medium into the right jugular vein at a rate of 4.0 mL/s. Dynamic CT scanning of the head at a level that included the mandibular condyle was initiated at the time of the contrast medium injection and continued for 100 seconds. A deconvolution method was used as an analytic algorithm.

RESULTS Among the 9 calves, the mean ± SD CBF in the cerebral cortex, white matter, and thalamus was 44.3 ± 10.3 mL/100 g/min, 36.1 ± 7.5 mL/100 g/min, and 40.3 ± 7.5 mL/100 g/min, respectively. The CBF in white matter was significantly lower than that in the cerebral cortex or thalamus. The mean CBV in the cerebral cortex, white matter, and thalamus was 6.8 ± 1.0 mL/100 g, 5.2 ± 1.0 mL/100 g, and 5.7 ± 0.7 mL/100 g, respectively. The CBV in the cerebral cortex was significantly higher than that in the white matter or thalamus.

CONCLUSIONS AND CLINICAL RELEVANCE Measurement of CBF and CBV in clinically normal calves by means of perfusion CT was feasible. The data obtained may be useful as baseline values for use in future research or for comparison with findings from calves with CNS diseases. Investigations to determine the lower limit of blood flow at which brain function can still be restored are warranted.

Full access
in American Journal of Veterinary Research


OBJECTIVE To investigate effects of changes in analytic variables and contrast medium osmolality on glomerular filtration rate estimated by CT (CT-GFR) in dogs.

ANIMALS 4 healthy anesthetized Beagles.

PROCEDURES GFR was estimated by inulin clearance, and dogs underwent CT-GFR with iodinated contrast medium (iohexol or iodixanol) in a crossover-design study. Dynamic renal CT scanning was performed. Patlak plot analysis was used to calculate GFR with the renal cortex or whole kidney selected as the region of interest. The renal cortex was analyzed just prior to time of the second cortical attenuation peak. The whole kidney was analyzed 60, 80, 100, and 120 seconds after the appearance of contrast medium. Automated GFR calculations were performed with preinstalled perfusion software including 2 noise reduction levels (medium and strong). The CT-GFRs were compared with GFR estimated by inulin clearance.

RESULTS There was no significant difference in CT-GFR with iohexol versus iodixanol in any analyses. The CT-GFR at the renal cortex, CT-GFR for the whole kidney 60 seconds after appearance of contrast medium, and CT-GFR calculated by perfusion software with medium noise reduction did not differ significantly from GFR estimated by inulin clearance. The CT-GFR was underestimated at ≥ 80 seconds after contrast medium appearance (whole kidney) and when strong noise reduction was used with perfusion CT software.

CONCLUSIONS AND CLINICAL RELEVANCE Selection of the renal cortex as region of interest or use of the 60-second time point for whole-kidney evaluation yielded the best CT-GFR results. The perfusion software used produced good results with appropriate noise reduction.

IMPACT FOR HUMAN MEDICINE The finding that excessive noise reduction caused underestimation of CT-GFR suggests that this factor should also be considered in CT-GFR examination of human patients.

Full access
in American Journal of Veterinary Research



To examine whether glucocorticoid (GC) administration alters hippocampal cerebral blood flow (CBF) or volume in dogs.


6 clinically normal adult Beagles.


Each dog underwent CT and MRI to measure the CBF in the hippocampus, basal ganglia, thalamus, and cerebral cortex and the volume of the hippocampus in each hemisphere of the brain before (day 0) and during (days 7 and 21) a 21-day treatment with prednisolone (1.0 mg/kg, PO, q 24 h) and famotidine (0.5 mg/kg, PO, q 12 h). Results for hippocampal volume, anesthesia-related variables, and semiquantitative measurements of CBF (hemisphere-specific ratios of the CBF in the hippocampus, basal ganglia, and thalamus relative to the CBF in the ipsilateral cerebral cortex and the left cerebral cortex CBF-to-right cerebral cortex CBF ratio) were compared across assessment time points (days 0, 7, and 21).


The ratios of CBF in the right hippocampus and right thalamus to that in the right cerebral cortex on day 21 were significantly lower than those on day 0. No meaningful differences were detected in results for the hippocampal volume in either hemisphere or for the anesthesia-related variables across the 3 time points.


Results indicated that GC administration reduced CBF in the hippocampus and thalamus in dogs of the present study, similar to that which occurs in humans. Research on GC-related brain alteration in dogs could potentially contribute to advancements in understanding Alzheimer disease in humans and neurodegenerative conditions in dogs.

Full access
in American Journal of Veterinary Research


Objective—To evaluate lateral ventricular size in clinically normal calves by use of computed tomography and to examine the relationships between ventricular height (Vh), ventricular area (VA), and ventricular volume (VV).

Animals—14 Holstein calves.

Procedures—14 calves underwent computed tomography of the head with transverse images acquired from the rostral aspect of the frontal lobe continuing caudally to the level of the foramen magnum. Hemispheric height, Vh, VA, and hemispheric area were measured on images obtained at the level of the interventricular foramen. Ventricular volume was calculated by multiplying the sum of VAs measured on each transverse image by the total slice thickness. The left Vh-to-right Vh ratio was calculated to determine the degree of ventricular asymmetry, which was categorized as normal (ie, symmetric) to minimally asymmetric, mildly asymmetric, or severely asymmetric.

Results—Mean ± SD values for Vh and the Vh-to-hemispheric height ratio were 4.96 ± 1.56 mm and 7.47%, respectively. The mean VA was 114.29 ± 47.68 mm2, and the mean VV was 2,443.50 ± 1,351.50 mm3. Normal to minimally asymmetric ventricles were identified in 13 calves, and mildly asymmetric ventricles were identified in 1 calf. Significant correlations were found between Vh and VA and between Vh and VV.

Conclusions and Clinical Relevance—These results establish reference values for ventricular size in clinically normal calves and suggest that Vh measurement may be a simple and useful technique for examining size of the cerebral ventricles in calves.

Full access
in American Journal of Veterinary Research