Search Results
You are looking at 1 - 5 of 5 items for
- Author or Editor: Mika Scheinin x
- Refine by Access: All Content x
Abstract
OBJECTIVE To assess the possible impact of medetomidine on concentrations of alfaxalone in plasma, when coadministered as a constant rate infusion (CRI) to dogs, and to determine the possible impact of medetomidine on the cardiopulmonary effects of alfaxalone during CRI.
ANIMALS 8 healthy adult Beagles.
PROCEDURES 3 treatments were administered in a randomized crossover design as follows: 1 = saline (0.9% NaCl) solution injection, followed in 10 minutes by induction of anesthesia with alfaxalone (loading dose, 2.4 mg/kg; CRI, 3.6 mg/kg/h, for 60 minutes); 2 = medetomidine premedication (loading dose, 4.0 μg/kg; CRI, 4.0 μg/kg/h), followed by alfaxalone (as in treatment 1); and, 3 = medetomidine (as in treatment 2) and MK-467 (loading dose, 150 μg/kg; CRI, 120 μg/kg/h), followed by alfaxalone (as in treatment 1). The peripherally acting α2-adrenoceptor antagonist MK-467 was used to distinguish between the peripheral and central effects of medetomidine. Drugs were administered IV via cephalic catheters, and there was a minimum of 14 days between treatments. Cardiopulmonary parameters were measured for 70 minutes, and jugular venous blood samples were collected until 130 minutes after premedication. Drug concentrations in plasma were analyzed with liquid chromatography–tandem mass spectrometry.
RESULTS The characteristic cardiovascular effects of medetomidine, such as bradycardia, hypertension, and reduction in cardiac index, were obtunded by MK-467. The concentrations of alfaxalone in plasma were significantly increased in the presence of medetomidine, indicative of impaired drug distribution and clearance. This was counteracted by MK-467.
CONCLUSIONS AND CLINICAL RELEVANCE The alteration in alfaxalone clearance when coadministered with medetomidine may be attributed to the systemic vasoconstrictive and bradycardic effects of the α2-adrenoceptor agonist. This could be clinically important because the use of α2-adrenoceptor agonists may increase the risk of adverse effects if standard doses of alfaxalone are used.
Abstract
OBJECTIVE To compare cardiovascular effects of premedication with medetomidine alone and with each of 3 doses of MK-467 or after glycopyrrolate in dogs subsequently anesthetized with isoflurane.
ANIMALS 8 healthy purpose-bred 5-year-old Beagles.
PROCEDURES In a randomized crossover study, each dog received 5 premedication protocols (medetomidine [10 μg/kg, IV] alone [MED] and in combination with MK-467 at doses of 50 [MMK50], 100 [MMK100], and 150 [MMK150] μg/kg and 15 minutes after glycopyrrolate [10 μg/kg, SC; MGP]), with at least 14 days between treatments. Twenty minutes after medetomidine administration, anesthesia was induced with ketamine (0.5 mg/kg, IV) and midazolam (0.1 mg/kg, IV) increments given to effect and maintained with isoflurane (1.2%) for 50 minutes. Cardiovascular variables were recorded, and blood samples for determination of plasma dexmedetomidine, levomedetomidine, and MK-467 concentrations were collected at predetermined times. Variables were compared among the 5 treatments.
RESULTS The mean arterial pressure and systemic vascular resistance index increased following the MED treatment, and those increases were augmented and obtunded following the MGP and MMK150 treatments, respectively. Mean cardiac index for the MMK100 and MMK150 treatments was significantly greater than that for the MGP treatment. The area under the time-concentration curve to the last sampling point for dexmedetomidine for the MMK150 treatment was significantly lower than that for the MED treatment.
CONCLUSIONS AND CLINICAL RELEVANCE Results indicated concurrent administration of MK-467 with medetomidine alleviated medetomidine-induced hemodynamic changes in a dose-dependent manner prior to isoflurane anesthesia. Following MK-467 administration to healthy dogs, mean arterial pressure was sustained at acceptable levels during isoflurane anesthesia.
Abstract
OBJECTIVE To evaluate effects of the peripherally acting α2-adrenoceptor antagonist MK-467 on cardiopulmonary function in sheep sedated with medetomidine and ketamine.
ANIMALS 9 healthy adult female sheep.
PROCEDURES Each animal received an IM injection of a combination of medetomidine (30 μg/kg) and ketamine (1 mg/kg; Med-Ket) alone and Med-Ket and 3 doses of MK-467 (150, 300, and 600 μg/kg) in a randomized blinded 4-way crossover study. Atipamezole (150 μg/kg, IM) was administered 60 minutes later to reverse sedation. Cardiopulmonary variables and sedation scores were recorded, and drug concentrations in plasma were analyzed. Data were analyzed with a repeated-measures ANCOVA and 1-way ANOVA. Reference limits for the equivalence of sedation scores were set at 0.8 and 1.25.
RESULTS Heart rate, cardiac output, and Pao2 decreased and mean arterial blood pressure, central venous pressure, and systemic vascular resistance increased after Med-Ket alone. Administration of MK-467 significantly alleviated these effects, except for the decrease in cardiac output. After sedation was reversed with atipamezole, no significant differences were detected in cardiopulmonary variables among the treatments. Administration of MK-467 did not significantly alter plasma concentrations of medetomidine, ketamine, norketamine, or atipamezole. Sedation as determined on the basis of overall sedation scores was similar among treatments.
CONCLUSIONS AND CLINICAL RELEVANCE Concurrent administration of MK-467 alleviated cardiopulmonary effects in sheep sedated with Med-Ket without affecting sedation or reversal with atipamezole.
Abstract
OBJECTIVE
To determine whether concurrent vatinoxan administration affects the antinociceptive efficacy of medetomidine in dogs at doses that provide circulating dexmedetomidine concentrations similar to those produced by medetomidine alone.
ANIMALS
8 healthy Beagles.
PROCEDURES
Dogs received 3 IV treatments in a randomized crossover-design trial with a 2-week washout period between experiments (medetomidine [20 μg/kg], medetomidine [20 μg/kg] and vatinoxan [400 μg/kg], and medetomidine [40 μg/kg] and vatinoxan [800 μg/kg]; M20, M20V400, and M40V800, respectively). Sedation, visceral and somatic nociception, and plasma drug concentrations were assessed. Somatic and visceral nociception measurements and sedation scores were compared among treatments and over time. Sedation, visceral antinociception, and somatic antinociception effects of M20V400 and M40V800 were analyzed for noninferiority to effects of M20, and plasma drug concentration data were assessed for equivalence between treatments.
RESULTS
Plasma dexmedetomidine concentrations after administration of M20 and M40V800 were equivalent. Sedation scores, visceral nociception measurements, and somatic nociception measurements did not differ significantly among treatments within time points. Overall sedative effects of M20V400 and M40V800 and visceral antinociceptive effects of M40V800 were noninferior to those produced by M20. Somatic antinociception effects of M20V400 at 10 minutes and M40V800 at 10 and 55 minutes after injection were noninferior to those produced by M20.
CONCLUSIONS AND CLINICAL RELEVANCE
Results suggested coadministration with vatinoxan did not substantially diminish visceral antinociceptive effects of medetomidine when plasma dexmedetomidine concentrations were equivalent to those produced by medetomidine alone. For somatic antinociception, noninferiority of treatments was detected at some time points.
Abstract
OBJECTIVE
To investigate the cardiovascular and sedation reversal effects of IM administration of atipamezole (AA) in dogs treated with medetomidine hydrochloride (MED) or MED and vatinoxan (MK-467).
ANIMALS
8 purpose-bred, 2-year-old Beagles.
PROCEDURES
A randomized, blinded, crossover study was performed in which each dog received 2 IM treatments at a ≥ 2-week interval as follows: injection of MED (20 μg/kg) or MED mixed with 400 μg of vatinoxan/kg (MEDVAT) 30 minutes before AA (100 μg/kg). Sedation score, heart rate, mean arterial and central venous blood pressures, and cardiac output were recorded before and at various time points (up to 90 minutes) after AA. Cardiac and systemic vascular resistance indices were calculated. Venous blood samples were collected at intervals until 210 minutes after AA for drug concentration analysis.
RESULTS
Heart rate following MED administration was lower, compared with findings after MEDVAT administration, prior to and at ≥ 10 minutes after AA. Mean arterial blood pressure was lower with MEDVAT than with MED at 5 minutes after AA, when its nadir was detected. Overall, cardiac index was higher and systemic vascular resistance index lower, indicating better cardiovascular function, in MEDVAT-atipamezole–treated dogs. Plasma dexmedetomidine concentrations were lower and recoveries from sedation were faster and more complete after MEDVAT treatment with AA than after MED treatment with AA.
CONCLUSIONS AND CLINICAL RELEVANCE
Atipamezole failed to restore heart rate and cardiac index in medetomidine-sedated dogs, and relapses into sedation were observed. Coadministration of vatinoxan with MED helped to maintain hemodynamic function and hastened the recovery from sedation after AA in dogs.