Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Micheline L. Burnham x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To evaluate a group of vaccine site-associated sarcomas (VSS) for the presence of feline foamy virus (FeFV) DNA, using polymerase chain reaction (PCR) methods.

Sample Population—50 formalin-fixed paraffin embedded (FFPE) tissue blocks from VSS of cats.

Procedure—DNA was extracted from FFPE sections of each tumor, and regions of the gag and pol genes of FeFV were amplified by use of PCR methods, using 1 primer set for each region. Sensitivity of the method was compared between fresh and FFPE cells, using mouse kidney tissue that was injected with FeFVinfected cultured cells and using agarose-cell pellets.

Results—Feline foamy virus DNA was not detected in VSS tissues. Sensitivity of the method was 10 times greater in fresh versus FFPE mouse tissues. Sensitivity of the method in fresh FeFV-infected cultured cells versus FFPE agarose-cell pellets was equal when fixation was 24 or 48 hours and 10 times greater when fixation was 72 hours or 1 week.

Conclusion and Clinical Relevance—A PCR-based method can be successfully applied to FFPE tissues for FeFV DNA detection. Results suggest there is no direct FeFV involvement in the pathogenesis of VSS in cats. (Am J Vet Res 2002;63:60–63)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether vaccine site-associated sarcomas (VSS) from cats contain polyomavirus antigen or DNA.

Sample Population—50 formalin-fixed paraffinembedded tissue blocks of VSS from cats.

Procedure—Sections from each tissue block were evaluated for polyomavirus antigen by use of an avidin-biotin-complex immunohistochemical staining method, using rabbit anti-murine polyomavirus polyclonal antiserum as the primary antibody. The DNA was extracted from sections of each tissue block, and a polymerase chain reaction assay was performed, using primers designed to amplify regions of the bovine polyomavirus genome and consensus polyomavirus primers designed to detect unknown polyomaviruses.

Results—Polyomavirus antigen and DNA were not detected in any of the VSS.

Conclusions and Clinical Relevance—Results suggest that polyomaviruses likely do not have any direct involvement in the pathogenesis of VSS in cats. (Am J Vet Res 2001;62:828–832)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine whether vaccine site-associated sarcomas (VSS) from cats contain papillomavirus antigen or DNA.

Sample Population—50 formalin-fixed paraffinembedded tissue blocks of VSS from cats.

Procedure—Sections from each tissue block were evaluated for papillomavirus antigen by use of an avidin-biotin-complex immunohistochemical staining method, using rabbit anti-bovine papillomavirus type-1 antibody. The DNA was extracted from sections of each tissue block, and polymerase chain reaction assays were performed, using primers designed to amplify regions of the E5 gene of bovine papillomavirus and consensus primers designed to amplify a region of the L1 gene of animal papillomaviruses. Sections from 20 of the tissue blocks were evaluated by use of nonradioactive in situ hybridization for bovine papillomavirus DNA.

Results—Papillomavirus antigen and DNA were not detected in any of the VSS.

Conclusions and Clinical Relevance—Results suggest that papillomaviruses likely do not have any direct involvement in the pathogenesis of VSS in cats. (Am J Vet Res 2001;62:833–839)

Full access
in American Journal of Veterinary Research