Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Michael W. Thomas x
  • Refine by Access: All Content x
Clear All Modify Search
in Journal of the American Veterinary Medical Association


Objective—To evaluate skeletal characteristics of pelvic limbs with and without cranial cruciate ligament (CCL) deficiency in Labrador Retrievers.

Animals—30 adult purebred Labrador Retrievers.

Procedures—Pelvic limbs (n = 28) of 14 dogs without CCL deficiency were classified as control limbs, whereas the limbs of 16 dogs with CCL deficiency were considered affected by (18 limbs) or predisposed to (10 contralateral limbs of dogs with 1 affected limb) CCL deficiency. Skeletal characteristics were evaluated via physical examination, radiography, and computed tomography. Radiographic and computed tomographic variables were compared among limb groups by use of a mixed-model ANOVA.

Results—The tibial plateau slope was steeper in CCL-deficient limbs but not in predisposed limbs, compared with the slope in control limbs. The angle between diaphyseal and proximal tibial axes was increased in both CCL-deficient and predisposed limbs. The relative width of the proximal portion of the tibia and the inclination of the patellar ligament did not differ among limb groups. The overall and distal femoral anteversion angles were greater in CCL-deficient and predisposed limbs, whereas the femoral condyle trochanteric angle was decreased in those limb groups, compared with findings in control limbs.

Conclusions and Clinical Relevance—Cranial angulation of the proximal portion of the tibia, excessive steepness of the tibial plateau, and distal femoral torsion appeared more likely to be associated with CCL deficiency than femoral angulation, tibial torsion, intercondylar notch stenosis, and increased inclination of the patellar ligament.

Full access
in American Journal of Veterinary Research
in Journal of the American Veterinary Medical Association


Objective—To determine the epidemiologic plausibility of a sylvatic transmission cycle for Neospora caninum between wild canids and beef cattle.

Design—Spatial analysis study.

Animals—1,009 weaned beef steers from 94 beef herds in Texas.

Procedure—Calves were grouped on the basis of seroprevalence for N caninum and ecologic region in Texas. The Morans I test was used to evaluate spatial interdependence for adjusted seroprevalence by ecologic region. Cattle density (Number of cattle/259 km2 [Number of cattle/100 mile2] of each ecologic region) and abundance indices for gray foxes and coyotes (Number of animals/161 spotlight-transect [census] km [Number of animals/100 census miles] of each ecologic region) were used as covariates in spatial regression models, with adjusted seroprevalence as the outcome variable. A geographic information system (GIS) that used similar covariate information for each county was used to validate spatial regression models.

Results—Spatial interdependence was not detected for ecologic regions. Three spatial regression models were tested. Each model contained a variable for cattle density for the ecologic regions. Results for the 3 models revealed that seroprevalence was associated with cattle density and abundances of gray foxes, coyotes, or both. Abundances of gray foxes and coyotes were collinear. Results of a GIS-generated model validated these spatial models.

Conclusions and Clinical Relevance—In Texas, beef cattle are at increased risk of exposure to N caninum as a result of the abundance of wild canids and the density of beef cattle. It is plausible that a sylvatic transmission cycle for neosporosis exists. (J Am Vet Med Assoc 2000;217:1361–1365)

Full access
in Journal of the American Veterinary Medical Association