Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Michael R. Loomis x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To compare the anesthetic efficacy and physiologic changes associated with exposure to tricaine methanesulfonate and clove oil (100% eugenol).

Animals—15 adult cultured red pacu (Piaractus brachypomus).

Procedure—Fish were exposed to each of 6 anesthetic concentrations in a within-subjects complete crossover design. Stages of anesthesia and recovery were measured, and physiologic data were collected before and during anesthesia.

Results—Interval to induction was more rapid and recovery more prolonged in fish exposed to eugenol, compared with those exposed to tricaine methanesulfonate. The margin of safety for eugenol was narrow, because at the highest concentration, most fish required resuscitation. Mixed venous-arterial PO2 consistently decreased with anesthesia, while PCO2 consistently increased with anesthesia in all fish regardless of anesthetic agent. The increase in PCO2 was accompanied by a decrease in pH, presumably secondary to respiratory acidosis. Anesthesia was associated with increased blood glucose, potassium, and sodium concentrations as well as Hct and hemoglobin. Fish anesthetized with eugenol were more likely to react to a hypodermic needle puncture than fish anesthetized with tricaine methanesulfonate.

Conclusions and Clinical Relevance—Anesthesia induced with tricaine methanesulfonate or eugenol contributes to hypoxemia, hypercapnia, respiratory acidosis, and hyperglycemia in red pacu. Similar to tricaine methanesulfonate, eugenol appears to be an effective immobilization compound, but eugenol is characterized by more rapid induction, prolonged recovery, and a narrow margin of safety. Care must be taken when using high concentrations of eugenol for induction, because ventilatory failure may occur rapidly. In addition, analgesic properties of eugenol are unknown. (Am J Vet Res 2001;62:337–342)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To evaluate the cardiopulmonary effects of immobilizing doses of xylazine-ketamine (XK), medetomidine-ketamine (MK), medetomidine-ketamine- acepromazine (MKA), and medetomidine-butorphanol- ketamine (MBK) in captive red wolves.

Design—Prospective study.

Animals—32 adult captive red wolves.

Procedure—Wolves were randomly assigned to 1 of 4 treatment groups: XK, MK, MKA, or MBK. Physiologic variables measured included heart rate, blood pressure, respiratory rate, tidal volume, oxygen-hemoglobin saturation (SpO2), end-tidal CO2, arterial blood gases, and rectal temperature. Induction time, muscle relaxation, and quality of recovery were assessed.

Results—Heart rates were lower in wolves in the MBK group than for the other groups. All 4 drug combinations induced considerable hypertension, with diastolic pressures exceeding 116 mm Hg. Blood pressure was lowest in wolves receiving the MBK combination. Respiratory rate was significantly higher in wolves receiving XK, MK, and MKA. Tidal volumes were similar for all groups. Wolves receiving XK, MK, and MKA were well-oxygenated throughout the procedure (SpO2 > 93%), whereas those receiving MBK were moderately hypoxemic (87% < SpO2 < 93%) during the first 20 minutes of the procedure. Hyperthermia was detected initially following induction in all groups.

Conclusions and Clinical Relevance—The α2- adrenoceptor agonist-ketamine combinations provide rapid reversible anesthesia for red wolves but cause severe sustained hypertension. Such an adverse effect puts animals at risk for development of cerebral encephalopathy, retinal hemorrhage, pulmonary edema, and myocardial failure. Although the MBK combination offers some advantages over the others, it is advised that further protocol refinements be made to minimize risks associated with acute hypertension. (J Am Vet Med Assoc 2000;217:1366–1371)

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

CASE DESCRIPTION A 22-year-old male gorilla (Gorilla gorilla gorilla) housed in a zoo was evaluated for signs of lethargy, head-holding, and cervical stiffness followed by development of neurologic abnormalities including signs of depression, lip droop, and tremors.

CLINICAL FINDINGS Physical examination under general anesthesia revealed a tooth root abscess and suboptimal body condition. A CBC and serum biochemical analysis revealed mild anemia, neutrophilia and eosinopenia consistent with a stress leukogram, and signs consistent with dehydration. Subsequent CSF analysis revealed lymphocytic pleocytosis and markedly increased total protein concentration.

TREATMENT AND OUTCOME Despite treatment with antimicrobials, steroids, and additional supportive care measures, the gorilla's condition progressed to an obtunded mentation with grand mal seizures over the course of 10 days. Therefore, the animal was euthanized and necropsy was performed. Multifocal areas of malacia and hemorrhage were scattered throughout the brain; on histologic examination, these areas consisted of necrosis and hemorrhage associated with mixed inflammation, vascular necrosis, and intralesional amoebic trophozoites. Tan foci were also present in the kidneys and pancreas. Immunohistochemical testing positively labeled free-living amoebae within the brain, kidneys, eyes, pancreas, heart, and pulmonary capillaries. Subsequent PCR assay of CSF and frozen kidney samples identified the organism as Balamuthia mandrillaris, confirming a diagnosis of amoebic meningoencephalitis.

CLINICAL RELEVANCE Infection with B mandrillaris has been reported to account for 2.8% of captive gorilla deaths in North America over the past 19 years. Clinicians working with gorillas should have a high index of suspicion for this diagnosis when evaluating and treating animals with signs of centrally localized neurologic disease.

Restricted access
in Journal of the American Veterinary Medical Association

Abstract

Case Description—A 6.5-year-old female eastern black and white colobus monkey (Colobus guereza) was evaluated after acute onset of ataxia and inappetence.

Clinical Findings—The monkey was ataxic and lethargic, but no other abnormalities were detected via physical examination, radiography, or clinicopathologic analyses. During the next 2 days, the monkey's clinical condition deteriorated, and its WBC count decreased dramatically. Cytologic examination of a CSF sample revealed marked lymphohistiocytic inflammation.

Treatment and Outcome—Despite supportive care, the monkey became apneic; after 20 hours of mechanical ventilation, fatal cardiac arrest occurred. At necropsy, numerous petechiae were detected within the white matter tracts of the brain; microscopic lesions of multifocal necrosis and hemorrhage with intranuclear inclusions identified in the brain and adrenal glands were consistent with an acute herpesvirus infection. A specific diagnosis of herpesvirus papio-2 (HVP-2) infection was made on the basis of results of serologic testing; PCR assay of tissue specimens; live virus isolation from the lungs; and immunohistochemical identification of the virus within brain, spinal cord, and adrenal gland lesions. Via phylogenetic tree analysis, the colobus HVP-2 isolate was grouped with neuroinvasive strains of the virus. The virus was most likely transmitted to the colobus monkey through toys shared with a nearby colony of baboons (the natural host of HVP-2).

Clinical Relevance—To the authors' knowledge, this is the first reported case of natural transmission of HVP-2 to a nonhost species. Infection with HVP-2 should be a differential diagnosis for acute encephalopathy in primate monkeys and humans, particularly following exposure to baboons.

Restricted access
in Journal of the American Veterinary Medical Association