Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Michael L. Harrington x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To determine the minimal ultrasonic aspirator pressure necessary to damage the cerebral cortex of healthy dogs.

Animals—9 mixed-breed dogs.

Procedure—The study comprised 2 parts. In part A, 6 dogs were euthanatized immediately prior to the experiment. In part B, 3 dogs were anesthetized for recording of physiologic variables. In both parts, craniectomy and durotomy were performed to bilaterally expose the lateral aspect of the cerebral cortex. An ultrasonic aspirator was placed in contact with various areas of the cerebral cortex, and aspirator power was altered (10, 20, 30, and 40%). Duration of contact at each power was 5 and 10 seconds. Subsequently, gross morphologic and histologic damage was assessed in the cortex.

Results—Gross observations for all dogs were similar. At 10% power, visible or histologic damage was not evident in the cortex. At 20% power, the cortex was slightly indented from contact with the hand piece; however, cortical disruption was not evident. Cortical disruption was initially detectable at 30% power in some dogs and was consistently evident at 40% power in both sets of dogs.

Conclusions and Clinical Relevance—Ultrasonic aspirator power of < 20% created minimal acute morphologic damage to the cortex. Power settings between 20 and 30% may superficially damage the cerebral cortex in healthy dogs, whereas 40% power consistently damages the cerebral cortex. Knowledge of the degree of damage to cerebral cortex caused by various amounts of power for ultrasonic aspirators will allow surgeons to avoid damaging normal brain tissues during surgery. (Am J Vet Res 2001;62: 248–251)

Full access
in American Journal of Veterinary Research



To compare serum cardiac troponin I (cTnI) concentrations between sea otters with and without cardiomyopathy and describe 2 cases of cardiomyopathy with different etiologies.


25 free-ranging southern sea otters (Enhydra lutris nereis) with (n = 14; cases) and without (11; controls) cardiomyopathy and 17 healthy managed southern sea otters from aquariums or rehabilitation centers (controls).


Serum cTnI concentration was measured in live sea otters. Histopathologic and gross necropsy findings were used to classify cardiomyopathy status in free-ranging otters; physical examination and echocardiography were used to assess health status of managed otters. Two otters received extensive medical evaluations under managed care, including diagnostic imaging, serial cTnI concentration measurement, and necropsy.


A significant difference in cTnI concentrations was observed between cases and both control groups, with median values of 0.279 ng/mL for cases and < 0.006 ng/mL for free-ranging and managed controls. A cutoff value of ≥ 0.037 ng/mL yielded respective sensitivity and specificity estimates for detection of cardiomyopathy of 64.3% and 90.9% for free-ranging cases versus free-ranging controls and 64.3% and 94.1% for free-ranging cases versus managed controls.


Cardiomyopathy is a common cause of sea otter death that has been associated with domoic acid exposure and protozoal infection. Antemortem diagnostic tests are needed to identify cardiac damage. Results suggested that serum cTnI concentration has promise as a biomarker for detection of cardiomyopathy in sea otters. Serial cTnI concentration measurements and diagnostic imaging are recommended to improve heart disease diagnosis in managed care settings.

Full access
in American Journal of Veterinary Research