Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: Michael D. Kleinhenz x
- Refine by Access: All Content x
Abstract
OBJECTIVE
To describe the pharmacokinetics of morphine, lidocaine, and ketamine associated with IV administration of a constant rate infusion (CRI) of a morphine-lidocaine-ketamine (MLK) combination to calves undergoing umbilical herniorrhaphy.
ANIMALS
20 weaned Holstein calves with umbilical hernias.
PROCEDURES
Calves were randomly assigned to receive a CRI of an MLK solution (0.11 mL/kg/h; morphine, 4.8 μg/kg/h; lidocaine, 2.1 mg/kg/h; and ketamine, 0.42 mg/kg/h) for 24 hours (MLK group) or 2 doses of flunixin meglumine (1.1 mg/kg, IV, q 24 h) and a CRI of saline (0.9% NaCl) solution (0.11 mL/kg/h) for 24 hours (control group). For all calves, the CRI was begun after anesthesia induction. Blood samples were obtained immediately before and at predetermined times for 120 hours after initiation of the assigned treatment. Noncompartmental analysis was used to estimate pharmacokinetic parameters for the MLK group.
RESULTS
During the CRI, steady-state serum concentrations were achieved for lidocaine and ketamine, but not morphine. Mean terminal half-life was 4.1, 0.98, and 1.55 hours and area under the concentration-time curve was 41, 14,494, and 7,426 h•μg/mL for morphine, lidocaine, and ketamine, respectively. After the CRI, the mean serum drug concentration at steady state was 6.3, 616.7, and 328 ng/mL for morphine, lidocaine, and ketamine, respectively.
CONCLUSIONS AND CLINICAL RELEVANCE
During the CRI of the MLK solution, steady-state serum concentrations were achieved for lidocaine and ketamine, but not morphine, likely owing to the fairly long half-life of morphine. Kinetic analyses of MLK infusions in cattle are necessary to establish optimal dosing protocols.
Abstract
OBJECTIVE
To assess the analgesic efficacy of an IV constant rate infusion (CRI) of a morphine-lidocaine-ketamine (MLK) combination in calves undergoing umbilical herniorrhaphy.
ANIMALS
20 weaned Holstein calves with umbilical hernias.
PROCEDURES
Calves were randomly assigned to receive a CRI of an MLK solution (0.11 mL/kg/h; morphine, 4.8 μg/kg/h; lidocaine, 2.1 mg/kg/h; and ketamine, 0.42 mg/kg/h) for 24 hours (MLK group) or 2 doses of flunixin meglumine (1.1 mg/kg, IV, q 24 h) and a CRI of saline (0.9% NaCl) solution (0.11 mL/kg/h) for 24 hours (control group). The assigned CRI was begun after anesthesia induction. A pain-scoring system and incisional algometry were used to assess pain, and blood samples were obtained to measure serum cortisol concentration at predetermined times for 120 hours after CRI initiation.
RESULTS
Mean pain scores did not differ significantly between the MLK and control groups at any time. Mean algometry score for the MLK group was significantly greater (calves were less responsive to pressure) than that for the control group at 4 hours after CRI initiation. Mean cortisol concentration decreased over time for both groups and was significantly greater for the MLK group than the control group at 1, 4, and 18 hours after CRI initiation.
CONCLUSIONS AND CLINICAL RELEVANCE
A CRI of MLK provided adequate postoperative analgesia to calves that underwent umbilical herniorrhaphy. However, the technical support required for CRI administration limits its use to hospital settings. Kinetic analyses of MLK infusions in cattle are necessary to establish optimal dosing protocols and withdrawal intervals.
Abstract
OBJECTIVE To determine the effect of age on the pharmacokinetics and pharmacodynamics of flunixin meglumine following IV and transdermal administration to calves.
ANIMALS 8 healthy weaned Holstein bull calves.
PROCEDURES At 2 months of age, all calves received an injectable solution of flunixin (2.2 mg/kg, IV); then, after a 10-day washout period, calves received a topical formulation of flunixin (3.33 mg/kg, transdermally). Blood samples were collected at predetermined times before and for 48 and 72 hours, respectively, after IV and transdermal administration. At 8 months of age, the experimental protocol was repeated except calves received flunixin by the transdermal route first. Plasma flunixin concentrations were determined by liquid chromatography-tandem mass spectroscopy. For each administration route, pharmacokinetic parameters were determined by noncompartmental methods and compared between the 2 ages. Plasma prostaglandin (PG) E2 concentration was determined with an ELISA. The effect of age on the percentage change in PGE2 concentration was assessed with repeated-measures analysis. The half maximal inhibitory concentration of flunixin on PGE2 concentration was determined by nonlinear regression.
RESULTS Following IV administration, the mean half-life, area under the plasma concentration-time curve, and residence time were lower and the mean clearance was higher for calves at 8 months of age than at 2 months of age. Following transdermal administration, the mean maximum plasma drug concentration was lower and the mean absorption time and residence time were higher for calves at 8 months of age than at 2 months of age. The half maximal inhibitory concentration of flunixin on PGE2 concentration at 8 months of age was significantly higher than at 2 months of age. Age was not associated with the percentage change in PGE2 concentration following IV or transdermal flunixin administration.
CONCLUSIONS AND CLINICAL RELEVANCE In calves, the clearance of flunixin at 2 months of age was slower than that at 8 months of age following IV administration. Flunixin administration to calves may require age-related adjustments to the dose and dosing interval and an extended withdrawal interval.