Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Micah Kohles x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the pharmacokinetics of meloxicam (1 mg/kg) in rabbits after oral administration of single and multiple doses.

Animals—6 healthy rabbits.

Procedures—A single dose of meloxicam (1 mg/kg, PO) was administered to the rabbits. After a 10-day washout period, meloxicam (1 mg/kg, PO) was administered to rabbits every 24 hours for 5 days. Blood samples were obtained from rabbits at predetermined intervals during both treatment periods. Plasma meloxicam concentrations were determined, and noncompartmental pharmacokinetic analysis was performed.

Results—The mean peak plasma concentration and area under the plasma concentration-versus-time curve extrapolated to infinity after administration of a single dose of meloxicam were 0.83 μg/mL and 10.37 h•μg/mL, respectively. After administration of meloxicam for 5 days, the mean peak plasma concentration was 1.33 μg/mL, and the area under the plasma concentration-versus-time curve from the time of administration of the last dose to 24 hours after that time was 18.79 h•μg/mL. For single- and multiple-dose meloxicam experiments, the mean time to maximum plasma concentration was 6.5 and 5.8 hours and the mean terminal half-life was 6.1 and 6.7 hours, respectively.

Conclusions and Clinical Relevance—Plasma concentrations of meloxicam for rabbits in the present study were proportionally higher than those previously reported for rabbits receiving 0.2 mg of meloxicam/kg and were similar to those determined for animals of other species that received clinically effective doses. A dose of 1 mg/kg may be necessary to achieve clinically effective circulating concentrations of meloxicam in rabbits, although further studies are needed.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine the pharmacokinetics and safety of meloxicam in rabbits when administered orally for 29 days.

Animals—6 healthy rabbits.

Procedures—Meloxicam (1.0 mg/kg, PO, q 24 h) was administered to rabbits for 29 days. Blood was collected immediately before (time 0) and 2, 4, 6, 8, and 24 hours after drug administration on days 1, 8, 15, 22, and 29 to evaluate the pharmacokinetics of meloxicam. On day 30, an additional sample was collected 36 hours after treatment. Plasma meloxicam concentrations were quantified with liquid chromatography–mass spectrometry, and noncompartmental pharmacokinetic analysis was performed. Weekly plasma biochemical analyses were performed to evaluate any adverse physiologic effects. Rabbits were euthanatized for necropsy on day 31.

Results—Mean ± SD peak plasma concentrations of meloxicam after administration of doses 1, 8, 15, 22, and 29 were 0.67 ± 0.19 μg/mL, 0.81 ± 0.21 μg/mL, 1.00 ± 0.31 μg/mL, 1.00 ± 0.29 μg/mL, and 1.07 ± 0.19 μg/mL, respectively; these concentrations did not differ significantly among doses 8 through 29. Results of plasma biochemical analyses were within reference ranges at all time points evaluated. Gross necropsy and histologic examination of tissues revealed no clinically relevant findings.

Conclusions and Clinical Relevance—Plasma concentrations of meloxicam for rabbits in the present study were similar to those previously reported in rabbits that received 1. 0 mg of meloxicam/kg, PO every 24 hours, for 5 days. Results suggested that a dosage of 1. 0 mg/kg, PO, every 24 hours for up to 29 days may be safe for use in healthy rabbits.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

This study aimed to characterize the bacterial and eukaryotic microbiota of the gastrointestinal (GI) tract in domestic rabbits and to evaluate the effect of different diet characteristics, such as pelleting, extrusion, and hay supplementation.

ANIMALS

30 New Zealand White rabbits (15 male and 15 female; 6 to 7 months old) were fed 1 of 6 diets (5 rabbits per diet) for 30 days after an initial acclimation period. At the end of the trial, samples were collected from the stomach, small intestine, cecum, large intestine, and hard feces.

METHODS

The samples were analyzed using 16S rRNA and internal transcribed spacer 1 region-targeted amplicon sequencing.

RESULTS

The bacterial microbiota was distinct between the foregut and hindgut. The most abundant bacterial genera included an unclassified genus in the Bacteroidales order and Alistipes. Candida was the most abundant genus in the eukaryotic dataset. In the bacterial dataset, diet No Hay/Pellet E was shown to have lower diversity (Shannon diversity, P < .05) compared to all diet groups except for No Hay/Pellet M. Few significant differences in alpha-diversity indexes between diet groups were detected in the eukaryotic dataset.

CLINICAL RELEVANCE

Our findings demonstrated that feeding hay had a significant effect on the beta diversity of the bacterial microbiota. Given the prevalence of gastrointestinal disease in the domestic rabbit population, furthering our understanding of what constitutes a healthy rabbit microbiota and the effects of different diets on the microbial community can help veterinarians implement better intervention strategies and allow pet owners to provide the best level of care.

Open access
in American Journal of Veterinary Research