Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Megan Field x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To compare β-hydroxybutyrate (BHB) and glucose concentrations measured with a dual-purpose point-of-care (POC) meter designed for use in humans and a laboratory biochemical analyzer (LBA) to determine whether the POC meter would be reliable for on-farm measurement of blood glucose and BHB concentrations in sheep in various environmental conditions and nutritional states.

Animals—36 pregnant mixed-breed ewes involved in a maternal feed restriction study.

Procedures—Blood samples were collected from each sheep at multiple points throughout gestation and lactation to allow for tracking of gradually increasing metabolic hardship. Whole blood glucose and BHB concentrations were measured with the POC meter and compared with serum results obtained with an LBA.

Results—464 samples were collected. Whole blood BHB concentrations measured with the POC meter compared well with LBA results, and error grid analysis showed the POC values were acceptable. Whole blood glucose concentrations measured with the POC meter had more variation, compared with LBA values, over the glucose ranges evaluated. Results of error grid analysis of POC-measured glucose concentrations were not acceptable, indicating errors likely to result in needless treatment with glucose or other supplemental energy sources in normoglycemic sheep.

Conclusions and Clinical Relevance—The POC meter was user-friendly and performed well across a wide range of conditions. The meter was adequate for detection of pregnancy toxemia in sheep via whole blood BHB concentration. Results should be interpreted with caution when the POC meter is used to measure blood glucose concentrations.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE

To compare serum cardiac troponin I (cTnI) concentrations between sea otters with and without cardiomyopathy and describe 2 cases of cardiomyopathy with different etiologies.

ANIMALS

25 free-ranging southern sea otters (Enhydra lutris nereis) with (n = 14; cases) and without (11; controls) cardiomyopathy and 17 healthy managed southern sea otters from aquariums or rehabilitation centers (controls).

PROCEDURES

Serum cTnI concentration was measured in live sea otters. Histopathologic and gross necropsy findings were used to classify cardiomyopathy status in free-ranging otters; physical examination and echocardiography were used to assess health status of managed otters. Two otters received extensive medical evaluations under managed care, including diagnostic imaging, serial cTnI concentration measurement, and necropsy.

RESULTS

A significant difference in cTnI concentrations was observed between cases and both control groups, with median values of 0.279 ng/mL for cases and < 0.006 ng/mL for free-ranging and managed controls. A cutoff value of ≥ 0.037 ng/mL yielded respective sensitivity and specificity estimates for detection of cardiomyopathy of 64.3% and 90.9% for free-ranging cases versus free-ranging controls and 64.3% and 94.1% for free-ranging cases versus managed controls.

CONCLUSIONS AND CLINICAL RELEVANCE

Cardiomyopathy is a common cause of sea otter death that has been associated with domoic acid exposure and protozoal infection. Antemortem diagnostic tests are needed to identify cardiac damage. Results suggested that serum cTnI concentration has promise as a biomarker for detection of cardiomyopathy in sea otters. Serial cTnI concentration measurements and diagnostic imaging are recommended to improve heart disease diagnosis in managed care settings.

Full access
in American Journal of Veterinary Research