Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Matthew Breen x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To identify suitable reference genes for normalization of real-time quantitative PCR (RT-qPCR) assay data for common tumors of dogs.

Sample—Malignant lymph node (n = 8), appendicular osteosarcoma (9), and histiocytic sarcoma (12) samples and control samples of various nonneoplastic canine tissues.

Procedures—Array-based comparative genomic hybridization (aCGH) data were used to guide selection of 9 candidate reference genes. Expression stability of candidate reference genes and 4 commonly used reference genes was determined for tumor samples with RT-qPCR assays and 3 software programs.

ResultsLOC611555 was the candidate reference gene with the highest expression stability among the 3 tumor types. Of the commonly used reference genes, expression stability of HPRT was high in histiocytic sarcoma samples, and expression stability of Ubi and RPL32 was high in osteosarcoma samples. Some of the candidate reference genes had higher expression stability than did the commonly used reference genes.

Conclusions and Clinical Relevance—Data for constitutively expressed genes with high expression stability are required for normalization of RT-qPCR assay results. Without such data, accurate quantification of gene expression in tumor tissue samples is difficult. Results of the present study indicated LOC611555 may be a useful RT-qPCR assay reference gene for multiple tissue types. Some commonly used reference genes may be suitable for normalization of gene expression data for tumors of dogs, such as lymphomas, osteosarcomas, or histiocytic sarcomas.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To evaluate gene expression and DNA copy number in adipose tissue-derived stromal cells (ADSCs) and in ADSC-derived neurosphere-like cell clusters (ADSC-NSCs) generated from tissues of chronically paraplegic dogs.

ANIMALS 14 client-owned paraplegic dogs.

PROCEDURES Dorsal subcutaneous adipose tissue (< 1 cm3) was collected under general anesthesia; ADSCs were isolated and cultured. Third-passage ADSCs were cultured in neural cell induction medium to generate ADSC-NSCs. Relative gene expression of mesenchymal cell surface marker CD90 and neural progenitor marker nestin was assessed in ADSCs and ADSC-NSCs from 3 dogs by quantitative real-time PCR assay; expression of these and various neural lineage genes was evaluated for the same dogs by reverse transcription PCR assay. Percentages of cells expressing CD90, nestin, glial fibrillary acidic protein (GFAP), and tubulin β 3 class III (TUJ1) proteins were determined by flow cytometry for all dogs. The DNA copy number stability (in samples from 6 dogs) and neural cell differentiation (14 dogs) were assessed with array-comparative genomic hybridization analysis and immunocytochemical evaluation, respectively.

RESULTS ADSCs and ADSC-NSCs expressed neural cell progenitor and differentiation markers; GFAP and microtubule-associated protein 2 were expressed by ADSC-NSCs but not ADSCs. Relative gene expression of CD90 and nestin was subjectively higher in ADSC-NSCs than in ADSCs. Percentages of ADSC-NSCs expressing nestin, GFAP, and TUJ1 proteins were substantially higher than those of ADSCs. Cells expressing neuronal and glial markers were generated from ADSC-NSCs and had no DNA copy number instability detectable by the methods used.

CONCLUSIONS AND CLINICAL RELEVANCE Results suggested ADSCs can potentially be a safe and clinically relevant autologous source for canine neural progenitor cells. Further research is needed to verify these findings.

Full access
in American Journal of Veterinary Research

Abstract

In collaboration with the American College of Veterinary Pathologists

Open access
in Journal of the American Veterinary Medical Association