Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Mathur S. Kannan x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To determine whether intestinal ischemia would alter activity of the jejunum in vitro or alter staining characteristics for certain types of enteric neurotransmitters.

Sample Population—Jejunal samples obtained from 10 ponies.

Procedure—Jejunal samples were obtained from locations proximal and distal to an area of small intestine made ischemic for 60 minutes. A portion of each sample was stained to detect substance P-like immunoreactivity, cholinergic and adrenergic neurons, and nitric oxide synthase. Portions of the remaining samples were suspended in muscle baths. General activity patterns (frequency and amplitude of contraction), responses to neuronal depolarization induced by electrical field stimulation (EFS), and responses to 1 µM norepinephrine (NE) were compared with responses of a normal section of small intestine obtained prior to ischemic insult.

Results—Staining patterns were not altered. Proximal and distal sections had evidence of decreased contractility, compared with the normal section. Contraction frequency also was decreased, and distal sections had lower contraction frequency than proximal sections. Relaxation responses were decreased in distal sections. Responses to NE differed significantly for distal and proximal sections, compared with normal sections.

Conclusions and Clinical Relevance—Short-term ischemia can significantly affect adjacent bowel. Contractile and relaxation responses are impaired. Discrepancies in intestinal motility patterns and alterations in response to NE for sections proximal and distal to ischemic intestine could lead to clinical ileus or slowed transit of ingesta. (Am J Vet Res 2001; 62:1973–1978)

Restricted access
in American Journal of Veterinary Research


Objective—To determine whether substance P (SP) functions as a neurotransmitter in equine jejunum.

Sample Population—Samples of jejunum obtained from horses that did not have lesions in the gastrointestinal tract.

Procedure—Jejunal smooth muscle strips, oriented in the plane of the circular or longitudinal muscle, were suspended isometrically in muscle baths. Neurotransmitter release was induced by electrical field stimulation (EFS) delivered at 2 intensities (30 and 70 V) and various frequencies on muscle strips that were maintained at low tension or were under contraction. A neurokinin-1 receptor blocker (CP- 96,345) was added to baths prior to EFS to interrupt SP neurotransmission. Additionally, direct effects of SP on muscle strips were evaluated, and SP-like immunoreactivity was localized in intestinal tissues, using indirect immunofluorescence testing.

Results—Substance P contracted circularly and longitudinally oriented muscle strips. Prior treatment with CP-96,345 altered muscle responses to SP and EFS, suggesting that SP was released from depolarized myenteric neurons. Depending on orientation of muscle strips and stimulation variables used, CP-96,345 increased or decreased the contractile response to EFS. Substance P-like immunoreactivity was detected in the myenteric plexus and circular muscle layers.

Conclusions and Clinical Relevance—Substance P appears to function as a neurotransmitter in equine jejunum. It apparently modulates smooth muscle contractility, depending on preexisting conditions. Effects of SP may be altered in some forms of intestinal dysfunction. Altering SP neurotransmission in the jejunum may provide a therapeutic option for motility disorders of horses that are unresponsive to adrenergic and cholinergic drugs. (Am J Vet Res 2000;61: 1178–1184)

Restricted access
in American Journal of Veterinary Research