Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Martin J. Schmidt x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the prevalence of seizures in cats after head trauma.

Design—Retrospective cross-sectional study.

Animals—52 cats with head trauma.

Procedures—Information was obtained from medical records of cats with head trauma and via telephone interviews of owners at least 2 years after cats had head trauma. Severity of head trauma in cats was classified with the modified Glasgow coma scale (mGCS), and the association between scores and development of seizures was determined.

Results—9 cats had moderate head trauma (mGCS score, 9 to 14), and 43 cats had mild head trauma (mGCS score, 15 to 18). None of the cats developed seizures during the follow-up period (≥ 2 years after head injury). The calculated 95% confidence interval for prevalence of seizures in cats after head injury was 0% to 5.6%. There was no significant relationship between severity of head trauma and the risk of seizures in cats.

Conclusions and Clinical Relevance—Results indicated the probability that cats with mild to moderate head trauma would develop posttraumatic seizures was low. However, clinicians should monitor cats with a history of head trauma for development of secondary epilepsy.

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To measure the absolute and relative volumes of cranial vaults of Cavalier King Charles Spaniels (CKCSs) and other brachycephalic dogs for the purpose of evaluating a possible association between the volume of the caudal fossa (fossa caudalis cerebri; CF) and existence of Chiari-like malformation (CLM) and syringohydromyelia in CKCSs.

Animals—40 CKCSs and 25 brachycephalic dogs.

Procedures—The intracranial vault of all dogs was evaluated via computed tomography followed by magnetic resonance imaging. Volumes of the CF and the rostral and medial fossa (fossa rostralis et medialis cerebri) were determined. The ratio of the absolute volumes was calculated as the volume index (VI).

Results—All CKCSs had cranial characteristics consistent with CLM. There were no significant differences between CKCSs and brachycephalic dogs with respect to the VI and absolute volumes of the CF and rostral and medial fossas. The CKCSs without syringohydromyelia (n = 26) had a median VI of 0.1842, and CKCSs with syringohydromyelia (14) had a median VI of 0.1805. The median VI of other brachycephalic dogs was 0.1864. The VI did not differ among these 3 groups.

Conclusions and Clinical Relevance—Results of this study suggested that descent of the cerebellum into the foramen magnum and the presence of syringohydromyelia in CKCSs are not necessarily associated with a volume reduction in the CF of the skull.

Full access
in American Journal of Veterinary Research

Abstract

Objective—To examine outcome data for cats and dogs with congenital internal hydrocephalus following treatment via ventriculoperitoneal shunting to determine treatment-associated changes in neurologic signs, the nature and incidence of postoperative complications, and survival time.

Design—Retrospective multicenter case series.

Animals—30 dogs and 6 cats with congenital internal hydrocephalus (confirmed via CT or MRI).

Procedures—Medical records for dogs and cats with internal hydrocephalus that underwent unilateral ventriculoperitoneal shunt implantation from 2001 through 2009 were evaluated. Data collected included the nature and incidence of postoperative complications, change in clinical signs following surgery, and survival time. To compare pre- and postoperative signs, 2-way frequency tables were analyzed with a 1-sided exact McNemar test.

Results—8 of 36 (22%) animals developed postoperative complications, including shunt malfunction, shunt infection, and seizure events. Three dogs underwent shunt revision surgery. Thirteen (36%) animals died as a result of hydrocephalus-related complications or were euthanized. Following shunt implantation, clinical signs resolved in 7 dogs and 2 cats; overall, 26 (72%) animals had an improvement of clinical signs. After 18 months, 20 animals were alive, and the longest follow-up period was 9.5 years. Most deaths and complications occurred in the first 3 months after shunt placement.

Conclusions and Clinical Relevance—Results indicated that ventriculoperitoneal shunt implantation is a viable option for treatment of dogs or cats with congenital hydrocephalus. Because complications are most likely to develop in the first 3 months after surgery, repeated neurologic and imaging evaluations are warranted during this period.

Full access
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE To quantitatively analyze brain perfusion parameters in dogs with idiopathic epilepsy (IE) by use of MRI and to compare those findings with brain perfusion parameters for healthy dogs.

ANIMALS 12 client-owned dogs with IE.

PROCEDURES For each dog, standard MRI and perfusion-weighted imaging (before and after injection of gadoteric acid contrast medium) sequences of the brain were obtained during the interictal period by means of the same protocol used in a comparable study of healthy dogs. Time of contrast medium arrival, time to peak contrast enhancement, mean contrast transit time, and cerebral blood flow were calculated for the caudate nucleus, thalamus, piriform lobe, hippocampus, semioval center, and temporal cerebral cortex. Parameters for each structure were compared between dogs with IE and healthy dogs.

RESULTS Dogs with IE had a significantly greater mean time of contrast arrival and lower mean cerebral blood flow than healthy dogs. Differences in cerebral blood flow between dogs with IE and healthy dogs were most pronounced in the piriform lobe, thalamus, and temporal cerebral cortex. The mean contrast transit time did not differ between dogs with IE and healthy dogs.

CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that, compared with healthy dogs, dogs with IE have decreased blood perfusion of the brain. Findings of this study can be used as a basis for further research into functional changes within the brains of epileptic dogs during the interictal phase.

Full access
in American Journal of Veterinary Research

Abstract

OBJECTIVE To determine values of perfusion parameters determined via MRI in the brains of healthy dogs.

ANIMALS 10 healthy adult Beagles.

PROCEDURES Each dog was anesthetized for MRI examination of the brain, including standard sequences and a perfusion-weighted sequence. Gadoteric acid (0.2 mmol/kg) was injected IV at a rate of 5 mL/s. A dedicated workstation was used to measure the times from contrast medium injection to arrival at an ROI (TO) and peak contrast enhancement (TTP), mean contrast medium transport time (MTT), and cerebral blood flow (CBF) in the caudate nucleus, thalamus, piriform lobe, hippocampus, semioval center, and temporal cerebral cortex. A simple mathematical model was used to compare parameter values among the various brain regions.

RESULTS T0 and time to peak contrast enhancement had a significant linear relationship. A significant negative correlation was identified between T0 and CBF and, to a lesser extent, between MTT and CBF. Differences among brain regions were significant for MTT and CBF. The CBF was lowest in the semioval center, and the piriform lobe had almost 2-fold the CBF of that region. No significant differences were identified between hemispheres of the brain.

CONCLUSIONS AND CLINICAL RELEVANCE Findings obtained in this study involving healthy dogs may serve as a reference for MRI perfusion measurements in specific brain regions and may help in the characterization of various brain diseases in dogs.

Full access
in American Journal of Veterinary Research