Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Mark Waldron x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine whether dietary fatty acids affect indicators of insulin sensitivity, plasma insulin and lipid concentrations, and lipid accumulation in muscle cells in lean and obese cats.

Animals—28 neutered adult cats.

Procedure—IV glucose tolerance tests and magnetic resonance imaging were performed before (lean phase) and after 21 weeks of ad libitum intake of either a diet high in omega-3 polyunsaturated fatty acids (3-PUFAs; n = 14) or high in saturated fatty acids (SFAs; 14).

Results—Compared with the lean phase, ad libitum food intake resulted in increased weight, body mass index, girth, and percentage fat in both groups. Baseline plasma glucose or insulin concentrations and glucose area under the curve (AUC) were unaffected by diet. Insulin AUC values for obese and lean cats fed 3-PUFAs did not differ, but values were higher in obese cats fed SFAs, compared with values for lean cats fed SFAs and obese cats fed 3-PUFAs. Nineteen cats that became glucose intolerant when obese had altered insulin secretion and decreased glucose clearance when lean. Plasma cholesterol, triglyceride, and nonesterified fatty acid concentrations were unaffected by diet. Ad libitum intake of either diet resulted in an increase in both intra- and extramyocellular lipid. Obese cats fed SFAs had higher glycosylated hemoglobin concentration than obese cats fed 3-PUFAs.

Conclusions and Clinical Relevance—In obese cats, a diet high in 3-PUFAs appeared to improve long-term glucose control and decrease plasma insulin concentration. Obesity resulted in intra- and extramyocellular lipid accumulations (regardless of diet) that likely modulate insulin sensitivity. (Am J Vet Res 2004;65:1090–1099)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine possible diet aversion and lipid and lipoprotein alterations in cats fed diets containing medium-chain triglycerides (MCTs).

Animals—19 clinically normal adult female cats.

Procedures—Cats were assigned to 2 groups (low MCT diet [n = 10] and high MCT diet [9]) and fed the diets for 9 weeks according to metabolic body weight (100 kcal of metabolizable energy [ME] × kg−0.67/d). Daily consumption records and weekly body weight and body condition score (BCS) were used to adjust amounts fed and calculate daily ME factors for each cat to maintain ideal BCS. Blood samples were obtained after withholding food on days 0, 14, 28, and 56 for measurement of plasma triglyceride and total cholesterol concentrations and lipoprotein-cholesterol distributions. Repeated-measures ANOVA and Tukey multiple comparison tests were performed.

Results—No diet differences were found for food consumption, body weight, BCS, and ME factors. A significant increase in plasma triglyceride concentration was detected for the high MCT diet; however, values were within the reference ranges. No diet effects were observed for total cholesterol concentrations or lipoprotein-cholesterol distributions, although increases over time were observed.

Conclusions and Clinical Relevance—Inclusion of MCT in diets of cats did not result in feed refusal and had minimal effects on lipid metabolism. Such diets may be useful for both clinically normal cats and cats with metabolic disorders. The MCT oils are an example of a bioactive dietary lipid that may benefit feline metabolism and can serve as a useful functional food ingredient for cats.

Full access
in American Journal of Veterinary Research