Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: Mark M. Smith x
  • Refine by Access: All Content x
Clear All Modify Search


Objective—To determine total stiffness and gap stiffness of an external fixation system in a canine mandibular fracture gap model incorporating a full interdental pin as the only point of rostral fixation in a bilateral type-I external fixator.

Sample Population—10 canine mandibles.

Procedure—Bilateral mandibular ostectomies were performed between premolars 3 and 4. A type-I external fixator incorporating a full interdental pin was placed to stabilize a 0.5-cm fracture gap. Four pin configurations (intact mandibular bodies with fixator; ostectomized mandibular bodies and complete fixator; ostectomized mandibular bodies with caudal pins of rostral fragment cut; ostectomized mandibular bodies with all pins of rostral fragment cut) were tested in dorsoventral bending 5 times on each mandible. The full interdental pin remained intact in all configurations. Total stiffness and gap stiffness were determined for each configuration on a materials testing machine.

Results—Total stiffness of intact mandibles was significantly greater than that of ostectomized mandibles, regardless of external fixator configuration. However, total stiffness and gap stiffness were not significantly different among different external fixator configurations applied to ostectomized mandibles.

Conclusion and Clinical Relevance—External fixator configurations with only the full interdental pin engaging the rostral fragment were as stiff as configurations that had 2 or 4 additional pins in the rostral fragment for the applied loads. External fixators for rostral mandibular fractures may be rigidly secured with rostral fragment implants applied extracortically, avoiding iatrogenic trauma to teeth and tooth roots. (Am J Vet Res 2001;62:576–580)

Full access
in American Journal of Veterinary Research



To determine mortality rates for dogs with severe anaphylaxis and identify potential prognostic factors.


67 dogs with suspected anaphylaxis graded as severe.


Dogs were classified on the basis of outcome as survivors and nonsurvivors. Medical records were reviewed, and data were extracted including signalment, examination findings, time to hospital admission from onset of clinical signs, CBC results, serum biochemical analysis results, coagulation testing results, and findings on abdominal ultrasonography. Initial treatment within the first 6 hours after hospital admission was recorded for analysis, specifically including the use of epinephrine, diphenhydramine, corticosteroids, antimicrobials, fresh-frozen plasma, and supplemental dextrose.


The overall mortality rate was 14.9% (10/67) for dogs with anaphylaxis graded as severe. Serum phosphorus concentration and prothrombin time (PT) were significantly higher in nonsurvivors, compared with survivors. Nonsurvivors had lower presenting body temperatures than survivors. Serum phosphorus concentration ≥ 12.0 mmol/L, hypoglycemia within 6 hours after hospital admission, high PT value, concurrently high PT and partial thromboplastin time (PTT) values > 50% above the reference range limit, and the need for supplemental dextrose were associated with death. The incidences of coagulopathy and peritoneal effusion were unexpectedly high (85.2% and 65.5% of dogs, respectively) but were not indicative of survival.


Despite the poor presenting clinical condition seen in dogs with severe anaphylaxis, the rate of survival with treatment was fairly high. Coagulopathy and the presence of peritoneal effusion were common findings in dogs with severe anaphylaxis. Serum phosphorus concentration ≥ 12.0 mmol/L, high PT value, concurrent increases of PT and PTT values > 50% above reference range limits, hypoglycemia within 6 hours after hospital admission, and the need for supplemental dextrose were associated with death.

Restricted access
in Journal of the American Veterinary Medical Association


Recent state and federal legislative actions and current recommendations from the World Health Organization seem to suggest that, when it comes to antimicrobial stewardship, use of antimicrobials for prevention, control, or treatment of disease can be ranked in order of appropriateness, which in turn has led, in some instances, to attempts to limit or specifically oppose the routine use of medically important antimicrobials for prevention of disease. In contrast, the AVMA Committee on Antimicrobials believes that attempts to evaluate the degree of antimicrobial stewardship on the basis of therapeutic intent are misguided and that use of antimicrobials for prevention, control, or treatment of disease may comply with the principles of antimicrobial stewardship. It is important that veterinarians and animal caretakers are clear about the reason they may be administering antimicrobials to animals in their care. Concise definitions of prevention, control, and treatment of individuals and populations are necessary to avoid confusion and to help veterinarians clearly communicate their intentions when prescribing or recommending antimicrobial use.

Restricted access
in Journal of the American Veterinary Medical Association

Viewpoint articles represent the opinions of the authors and do not represent AVMA endorsement of such statements.


Antimicrobial stewardship has been defined for the veterinary profession as “the actions veterinarians take individually and as a profession to preserve the effectiveness and availability of antimicrobial drugs through conscientious oversight and responsible medical decision-making while safeguarding animal, public, and environmental health.” 1 These actions may include making a commitment in one’s veterinary practice by assigning a staff member to track stewardship activities, selecting antimicrobials in a judicious and evidence-based manner, or attending continuing education about antimicrobial use (AMU) decision-making. The

Free access
in Journal of the American Veterinary Medical Association