Search Results

You are looking at 1 - 10 of 35 items for

  • Author or Editor: Mark Anderson x
  • Refine by Access: All Content x
Clear All Modify Search
in Journal of the American Veterinary Medical Association

Abstract

OBJECTIVE To examine the effect of 24 hours of refrigeration on urine samples collected from dogs with signs of urinary tract infection (UTI).

DESIGN Prospective cross-sectional study.

ANIMALS 104 dogs with signs consistent with UTI that had a urine sample collected via cystocentesis as part of their diagnostic workup.

PROCEDURES A 1-mL aliquot of each urine sample was refrigerated at 5°C for 24 hours in a plain glass tube, then processed for quantitative bacterial culture (QBC). A 0.5-mL aliquot was added to 3 mL of tryptic soy broth (TSB) and refrigerated at 5°C for 24 hours, then processed for QBC. The remaining portion was immediately processed for QBC, with results reported as numbers of bacterial colony–forming units (CFUs). Sensitivity of the QBC for detection of bacteria (and therefore UTI) was determined for sample refrigeration in the 2 conditions, compared with immediate processing (reference standard).

RESULTS Bacterial growth was identified in 35.6% (n = 37), 33.7% (35), and 31.7% (33) of the immediately processed, refrigerated, and refrigerated-in-TSB urine samples, respectively. Sample refrigeration without TSB resulted in no significant difference in CFU counts relative to immediate processing; however, the sensitivity of this method was 95% (35/37). Sample refrigeration with TSB resulted in significantly lower CFU counts, and sensitivity was only 89% (33/37).

CONCLUSIONS AND CLINICAL RELEVANCE Canine urine samples collected for bacterial culture should be immediately submitted for testing. Although CFU counts for refrigerated and immediately processed samples were statistically similar in this study, sample refrigeration in enrichment broth resulted in imperfect sensitivity for UTI detection and is not recommended.

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To determine whether veterinary-specific oscillometric blood pressure units yield measurements that are in good agreement with directly measured blood pressures in cats.

Design—Evaluation study.

Animals—21 cats undergoing routine spaying or neutering.

Procedures—A 24-gauge catheter was inserted in a dorsal pedal artery, and systolic, diastolic, and mean arterial pressures were directly measured with a validated pressure measurement system. Values were compared with indirect blood pressure measurements obtained with 3 veterinary-specific oscillometric blood pressure units.

Results—There was poor agreement between indirectly and directly measured blood pressures. For unit 1, bias between indirectly and directly measured values was −14.9 mm Hg (95% limits of agreement [LOA], −52.2 to 22.4 mm Hg), 4.4 mm Hg (95% LOA, −26.0 to 34.8 mm Hg), and −1.3 mm Hg (95% LOA, −26.7 to 24.1 mm Hg) for systolic, diastolic, and mean arterial pressures, respectively. For unit 2, bias was −10.3 mm Hg (95% LOA, −52.9 to 32.2 mm Hg), 13.0 mm Hg (95% LOA, −32.1 to 58.0 mm Hg), and 9.1 mm Hg (95% LOA, −32.9 to 51.2 mm Hg) for systolic, diastolic, and mean arterial pressures, respectively. For unit 3, bias was −13.4 mm Hg (95% LOA, −51.8 to 25.1 mm Hg), 8.0 mm Hg (95% LOA, −25.5 to 41.6 mm Hg), and −3.6 mm Hg (95% LOA, −31.6 to 24.5 mm Hg) for systolic, diastolic, and mean arterial pressures, respectively.

Conclusions and Clinical Relevance—Results suggested that none of the 3 veterinary-specific oscillometric blood pressure units could be recommended for indirect measurement of blood pressure in cats.

Full access
in Journal of the American Veterinary Medical Association

Abstract

Objective—To partially characterize the cDNA, amino acid sequence, and tertiary structure of feline myeloperoxidase, describe its cellular location in mature granulocytes, and determine whether hyperthyroid cats have anti-myeloperoxidase antibody.

Sample Population—Bone marrow RNA and whole blood from cats of various sources and feline serum samples submitted for measurement of total thyroxine concentration from September 2006 to July 2007.

Procedures—Feline myeloperoxidase cDNA was amplified from bone marrow RNA; presumptive splice sites were determined by comparison with human sequences. Intracellular localization of myeloperoxidase in granulocytes was determined by use of immunofluorescence and electron microscopy, and molecular weight and partial tertiary structure were determined by use of immunoblotting of granulocyte lysates. Anti-human myeloperoxidase (hMPO) antibody was detected via ELISA.

Results—A 2,493-bp sequence encompassing the 2,160-bp cDNA with presumably the same number and size of exons as hMPO was generated. Translation predicted 85% homology with hMPO. Feline myeloperoxidase was localized to neutrophil primary granules, and immunoblotting revealed heavy and light bands with molecular weights similar to those of hMPO. The prevalence of anti-hMPO antibody did not differ between nonhyperthyroid and hyperthyroid cats or among hyperthyroid cats subclassified by treatment modality.

Conclusions and Clinical Relevance—Moderate homology existed between feline myeloperoxidase and hMPO cDNA and protein. Although findings suggested a similar tertiary structure and function for the 2 proteins, they also suggested that inability to detect a high prevalence of anti-hMPO antibody in hyperthyroid cats may be attributable to antigenic differences between the human and feline proteins rather than a lack of autoantibody.

Full access
in American Journal of Veterinary Research
in Journal of the American Veterinary Medical Association
in Journal of the American Veterinary Medical Association
in Journal of the American Veterinary Medical Association
in Journal of the American Veterinary Medical Association