Search Results

You are looking at 1 - 3 of 3 items for

  • Author or Editor: Marjan Faber x
  • Refine by Access: All Content x
Clear All Modify Search

Abstract

Objective—To determine the validity of using skin-fixated markers to assess kinematics of the thoracolumbar vertebral column in horses.

Animals—5 Dutch Warmblood horses without abnormalities of the vertebral column.

Procedure—Kinematics of T6, T10, T13, T17, L1, L3, L5, S3, and both tuber coxae were determined by use of bone-fixated and skin-fixated markers. Threedimensional coordinate data were collected while horses were walking and trotting on a treadmill. Angular motion patterns were calculated and compared on the basis of 2-dimensional analysis of data from skin-fixated markers and 3-dimensional analysis of data from bone-fixated markers.

Results—Flexion-extension of thoracolumbar vertebrae and axial rotation of the sacrum were satisfactorily determined at both the walk and trot, using skinfixated markers. Data from skin-fixated markers were accurate for determining lateral bending at the walk in the midthoracic and lower lumbar portion of the vertebral column only. However, at the trot, data from skin-fixated markers were valid for determining lateral bending for all thoracolumbar vertebrae.

Conclusions and Clinical Relevance—Caution should be taken when interpreting data obtained by use of skin-fixated markers on lateral bending motions during the walk in horses. For determination of other rotations at the walk and all rotations at the trot, use of skin-fixated markers allows valid calculations of kinematics of the vertebral column. Understanding to what extent movements of skin-fixated markers reflect true vertebral motion is a compulsory step in developing noninvasive methods for diagnosing abnormalities of the vertebral column and related musculature in horses. (Am J Vet Res 2001;62:301–306)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine movements of the vertebral column of horses during normal locomotion.

Animals—5 young Dutch Warmblood horses that did not have signs of back problems or lameness.

Procedure—Kinematics of 8 vertebrae (T6, T10, T13, T17, L1, L3, L5, and S3) and both tuber coxae were determined, using bone-fixated markers. Measurements were recorded when the horses were trotting on a treadmill at a constant speed of 4.0 m/s.

Results—Flexion-extension and axial rotation were characterized by a double sinusoidal pattern of motion during 1 stride cycle, whereas lateral bending was characterized by 1 peak and 1 trough. Ranges of motion for all vertebrae were: flexion-extension, 2.8o to 4.9o; lateral bending, 1.9° to 3.6°; axial rotation, 4.6° to 5.8°, except for T10 and T13, where the amount of axial rotation decreased to 3.1° and 3.3°, respectively.

Conclusion and Clinical Relevance—During locomotion, 3 types of rotations are evident in the thoracolumbar vertebrae. Regional differences are observed in the shape and timing of the rotations. These differences are related to actions of the limbs. The method described here for direct measurement of vertebral column motion provides insights into the complex movements of the thoracolumbar portion of the vertebral column in trotting horses. Information on normal kinematics is a prerequisite for a better understanding of abnormal function of the vertebral column in horses. (Am J Vet Res 2001;62:757–764)

Full access
in American Journal of Veterinary Research

Abstract

Objective—To determine kinematic movements of the vertebral column of horses during normal locomotion.

Animals—5 Dutch Warmblood horses without apparent lameness or problems associated with the vertebral column.

Procedure—Kinematics of 8 vertebrae (T6, T10, T13, T17, L1, L3, L5, and S3) and both tuber coxae were determined, using bone-fixated markers. Horses were recorded while walking on a treadmill at a constant speed of 1.6 m/s.

Results—Flexion-extension was characterized by 2 periods of extension and flexion during 1 stride cycle, whereas lateral bending and axial rotation were characterized by 1 peak and 1 trough. The range of motion for flexion-extension was fairly constant for vertebrae caudal to T10 (approximately 7°). For lateral bending, the cranial thoracic vertebrae and segments in the pelvic region had the maximal amount of motion, with values of up to 5.6°. For vertebrae between T17 and L5, the amount of lateral bending decreased to < 4°. The amount of axial rotation increased gradually from 4° for T6 to 13° for the tuber coxae.

Conclusions—This direct measurement method provides 3-dimensional kinematic data for flexion-extension, lateral bending, and axial rotation of the thoracolumbar portion of the vertebral column of horses walking on a treadmill. Regional differences were observed in the magnitude and pattern of the rotations. Understanding of the normal kinematics of the vertebral column in healthy horses is a prerequisite for a better understanding of abnormal function. (Am J Vet Res 2000;61:399–406)

Full access
in American Journal of Veterinary Research