Search Results
You are looking at 1 - 4 of 4 items for
- Author or Editor: Marcos P. Santos x
- Refine by Access: All Content x
Abstract
Objective—To compare the mechanical properties of laryngeal tie-forward (LTF) surrogate constructs prepared with steel fixtures and No. 5 braided polyester or braided polyethylene by use of a standard or a modified suture placement technique.
Sample—32 LTF surrogate constructs.
Procedures—Surrogate constructs were prepared with steel fixtures and sutures (polyester or polyethylene) by use of a standard or modified suture placement technique. Constructs underwent single-load-to-failure testing. Maximal load at failure, elongation at failure, stiffness, and suture breakage sites were compared among constructs prepared with polyester sutures by means of the standard (n = 10) or modified (10) technique and those prepared with polyethylene sutures with the standard (6) or modified (6) technique.
Results—Polyethylene suture constructs had higher stiffness, higher load at failure, and lower elongation at failure than did polyester suture constructs. Constructs prepared with the modified technique had higher load at failure than did those prepared with the standard technique for both suture materials. All sutures broke at the knot in constructs prepared with the standard technique. Sutures broke at a location away from the knot in 13 of 16 constructs prepared with the modified technique (3 such constructs with polyethylene sutures broke at the knot).
Conclusions and Clinical Relevance—Results suggested LTF surrogate constructs prepared with polyethylene sutures or the modified technique were stronger than those prepared with polyester sutures or the standard technique.
Abstract
OBJECTIVE To compare the mechanical properties of laryngeal tie-forward (LTF) constructs prepared with different suture materials and suture placement patterns during single load to failure testing.
SAMPLE Larynges harvested from 50 horse cadavers and 5 intact horse cadavers.
PROCEDURES In vitro LTF constructs were created by a standard technique with polyester sutures, a standard technique with polyethylene sutures, a modified technique with metallic implants and polyester sutures, a modified technique with metallic implants and polyethylene sutures, or a modified tie-off technique with polyester sutures (10 of each type of construct). Mechanical properties including maximal load (N) at failure and failure mode were compared among constructs. Also, maximal loads at failure of the in vitro LTF constructs were compared with the loads exerted on the sutures tightened to achieve rostral laryngeal advancement in intact cadavers.
RESULTS Constructs prepared by a standard technique with polyethylene sutures had a significantly higher pull out strength than those prepared by a modified technique with metallic implants and either polyester or polyethylene sutures. For constructs prepared by a standard technique with polyethylene sutures or similarly placed polyester sutures, maximal load at failure did not differ but the failure mode did differ significantly. The load to failure for all in vitro constructs was higher than the maximal load measured during a range of motion test in intact horse cadavers.
CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that LTF procedures can be performed in live horses with any of the suture materials and techniques tested.
Abstract
Objective—To determine the safety and short-term efficacy of intrabursal administration of botulinum toxin type B (BTXB) to alleviate lameness in horses with degenerative injury to the podotrochlear apparatus (PA).
Animals—10 Quarter Horses with degenerative injury to the PA.
Procedures—Degenerative injury to the PA was confirmed with diagnostic analgesia and imaging. Then, BTXB (3.8 to 4.5 U/kg) was injected into the podotrochlear (navicular) bursa of each horse. Three horses were used in a safety evaluation. Subsequently, video recordings of lameness evaluations were obtained for 7 client-owned horses 5 days before (baseline) and 7 and 14 days after BTXB treatment and used to determine the effect of BTXB injection on lameness; 1 horse was removed from the study 8 days after BTXB treatment. Three investigators who were unaware of the treated forelimbs or time points separately reviewed the recordings and graded the lameness of both forelimbs of the horses.
Results—Improvement in lameness of the treated forelimbs was detected at 1 or both time points after BTXB administration in all horses. However, all horses had some degree of lameness at the end of the study. Two horses developed transient increases in lameness 48 to 72 hours after treatment; lameness resolved uneventfully.
Conclusions and Clinical Relevance—Intrabursal injection of BTXB temporarily alleviated chronic lameness in horses with degenerative injury to the PA, without causing serious short-term adverse effects. Further investigation into the potential use of BTXB in horses affected by degenerative injury to the PA is warranted.